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Abstract. In this paper, the multi–server queue with general service time distribution and
Lebesgue–dominated iid inter–arival times is analyzed. This is done by introducing auxiliary
variables for the remaining service times and then examining the embedded Markov chain at
arrival instants. The concept of piecewise–deterministic Markov processes is applied to model
the inter–arrival behaviour. It turns out that the transition probability kernel of the embedded
Markov chain at arrival instants has the form of a lower Hessenberg matrix and hence admits
an operator–geometric stationary distribution. Thus it is shown that matrix–analytical methods
can be extended to provide a modeling tool even for the general multi-server queue.

1. Introduction

The study of general multi–server queues has proved to be much more diffi-
cult than the study of the single–server queue. While the classical paper by
Kiefer and Wolfowitz (1955) examines the chain of the users’ waiting times,
a satisfying method of deriving the queueing process (giving the number
of users in the system) has not been developed yet. There are good rea-
sons for this lack of results. Models in terms of Markov jump processes
such as

���������	�
���
queues yield only approximations (even this has not

been proven rigorously yet) while sometimes still requiring very large state
spaces. The construction of an embedded Markov chain like in the analy-
sis of

�
���	���
or
�������	���

queues (see Tweedie (1982) or Meyn, Tweedie
(1993)) turns out to be much more difficult for multi-server queues, because
the existence of more than one concurrent non–Markovian marginal pro-
cess (namely the concurrent services) makes the behaviour of the queueing
process between arrivals more complicated.

In the present paper, the concept of piecewise–deterministic Markov pro-
cesses (see Davis (1984), Costa and Dufour (1990; 1999), or Davis (1993)) is
exploited in order to describe the inter–arrival process in its full complexity.
Having described this missing link between arrival instants, it is possible to
conduct an analysis of the multi–server queue along the classical path of in-
troducing auxiliary variables for the remaining service times and then exam-
ining the Markov chain at arrival instants. A nice feature of the analysis is then
that the transition probability kernel of the embedded Markov chain can be
arranged to have the form of a

�	�������
–type matrix with kernel entries. Thus

it admits operator–geometric solutions along the lines of Tweedie (1982).

c
�

2003 Kluwer Academic Publishers. Printed in the Netherlands.

ggk-form.tex; 2/04/2003; 11:23; p.1



2

This shows that the structures revealed in the matrix–analytical paradigm
can even be found in the very general class of multi–server queues to be
analyzed in this paper. By the way it shall be mentioned that an analysis of
the
�
�������

queue can be performed in a much simpler way by modelling the
queueing process as a piecewise–deterministic Markov process directly and
then obtaining operator–geometric solutions, see Breuer (2003).

Consider the following
�������	���

queue: Arrivals occur independently with
iid inter–arrival times distributed by

�
. In order to avoid multiple events (like

arrival and departure) occuring at the same time instant, we assume that
�

has a Lebesgue density � . For deterministic inter–arrival times (which are not
Lebesgue–dominated), introduce a small perturbation which is Lebesgue–
dominated. Then the present model applies and yields an approximation.
Only single arrivals are allowed. The system shall have

�������
independent

servers. Every user has identical service time distribution � . The service
discipline is first come first served, and the capacity of the waiting room
is infinite. Let �! #"$�	%
&(' �)�+*	,-/. denote the queueing process, which
is defined as follows: The state space of � shall be 01&+ �+� -32 " �+* ,- .54
with the first dimension indicating the number of waiting users and the last

�
dimensions describing the remaining service times of the users in service. If
the 6 th server is idle, then the state of the system is "87:9<; . with ; � " ��* ,- .54
and ;>=? @7 . The state space 0 contains the minimal information needed to
give a full description of the system.

As already mentioned above, the method of analysis in the present paper
will be the following: First, the queueing process is described between suc-
cessive arrivals by means of a piecewise–deterministic Markov process. This
representation can be used directly in order to determine the transient distri-
bution of the queueing process at any time ' �
��* ,- . Furthermore, it yields
the transition probability kernel of the embedded Markov chain immediately
before arrival instants. This embedded chain will be used to derive a stability
condition in terms of mean drift as well as an expression for the stationary
distribution.

The rest of the paper is organized as follows: In section 2 the queueing pro-
cess between successive arrival instants will be described. Section 3 contains
an expression for the transient distribution of the queueing process. Section
4 gives a stability condition in terms of mean drift and section 5 contains
an algorithm for determining the stationary distribution. A simple example is
given in section 6.

2. The Inter–Arrival Process

Let
�

denote the queueing process between arrivals. Then
�

is a piecewise–
deterministic Markov process with state space 0A&+ �+� - 2 " �+* ,- . 4 having the
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same interpretation as the state space for � . A flow B on 0 shall be defined
by BC%D"FEG9<; . &+ H"FEG9I"F;KJMLN' . , 9POPOPOQ9I"F; 4 LN' . , .
for all "FEG9<; .  "FEG9<;RJQ9POPOPOS9<; 4 . � 0 and ' �T��*	,- , with "VU
LW' . , &+ XZY�[ "87:9\U]L3' . for all U^9<' �_��* . Obviously, this flow represents the proceeding
service time. Furthermore, we define'a`�"F; . &+ b Xdcfehg ;>=i& �	j 6 jk� 9<;>=Glm7�n for ;po �7q for ;
 �7
for all ;� r"F; J 9POPOPOS9<; 4 . � " ��* ,- . 4 , denoting the time until the first server
will become idle not taking into account future arrivals.

The transition measure �ts describes the state changes of the system in the
case of a server becoming idle. If there are any waiting users in the queue,
it immediately will commence to serve a new user. Let ;u v"F;GJQ9POPOPOQ9<; 4 . �" �+* ,- . 4 and

�  � J 2 OPOPO 2 � 4 �xw 4 , with
w 4 denoting the y –algebra of the

Borel sets on " �+* ,- .54 . Then we have

��sI"<"FEG9<; . 9 gQz n 2 � . &+ |{~}�� ����J/� 4��~� J<� ���� = �P��� "F; � . �I�
" � = .
for EN� � and ;�=R �7 , as well as��sI"<"FEG9<; . 9 gQz n 2 � . &+ |{~}�� �t� �P� "F; .
for E
 �7 , with {�}�� �N �

if z  @E and {~}?� �� �7 if z o �E denoting the
Kronecker function.

Note that for the case E
� � , only one server can become idle at a time.
Since the queue has Lebesgue–dominated single arrival input and the servers
work independently, the probability that two servers finish their work at the
same time instant is zero. Furthermore, if one server had been idle before the
other server and there had been any waiting users in the queue, it would have
commenced serving one of them.

Denote
� 4 �_�+* 4 as the vector with all entries being one and write"F;�L�� . , &+ )"<"F;KJ�L��:J . , 9POPOPOQ9I"F; 4 LN� 4 . , .

for all ;�9<� �u��* 4 . Let
�	� "F'~�I"FEG9<; . 9 gQz n 2 � . denote the probability that at

time ' ���+* ,- after the last arrival, the inter–arrival process
�

is in state setgQz n 2 � under the condition that it was in state "FEG9<; . immediately after the

last arrival. Further, let
�d������ "F'~�I"FEG9<; . 9 gQz n 2 � . denote the same probability,

but restricted to the set of paths with � �_�+� - jumps (i.e. service completions)
until time ' . Then the transition probability kernel and hence the transient
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distribution of the inter–arrival process � is given iteratively by� � "F'��I"FEG9<; . 9 gQz n 2 � .  �� = � - �¡�+=f�� "F'~�I"FEG9<; . 9 gQz n 2 � . (1)

with �¢� - �� "F'~�I"FEG9<; . 9 gQz n 2 � .  |{~}�� �£� �P� "F;¤L�'i� � 4 .
for '¦¥§'<`�"F; . and EN� � ,�¢� - �� "F'~�I"FEG9<; . 9 gQz n 2 � .  |{~}�� - � �P� "<"F;3LN'�� � 4 . , .
for E¨ �7 , and

� � - �� "F'~�I"FEG9<; . 9 gQz n 2 � .  �7 else as start values and iterating
by� �+= , J©�� "F'��I"FEG9<; . 9 gQz n 2 � .   «ª�¬ �¡�+=f�� "F']L�'<`�"F; . �I"8�59<� . 9 gQz n 2 � . �	sS"<"FEG9<; . 9D­�"8�59<� .<.
if '£lW'<`�"F; . and

� �+= , J©�� "F'~�I"FEG9<; . 9 gQz n 2 � .  )7 else. Note that the sum in
(1) can be truncated with arbitrarily small error as the service times are iid.

Remark 1 From the above definitions and the transition measure �Zs it is
clear that z l§E implies

�£� "F'~�I"FEG9<; . 9 gQz n 2 � .  �7 for all ' �x��* ,- , ; �_��* 4
and

�®�§w 4 . This expresses the obvious fact that during inter–arrival times
the number of waiting users cannot increase.

Remark 2 A more efficient way to compute the transient distribution of the
inter–arrival process is the following: Define the operator ¯ by ¯G" �¤��=°�� . &+ � ��= , J©�� . Then the transition probability kernel

� �
can be computed as the

limit
� �  ²± c³X ��´ � � � with

� -  � � - �� and
� � , J� µ¯G" � � ./¶ � - for allE �_�+� - .

3. Transient Distribution

Define a transition measure �£· that describes the state changes in the queue-
ing process induced by an arrival event. Remembering that � denotes the
service time distribution of a new user, this is given for all "FEG9<; . � 0 with;
 H"F;KJP9POPOPOI9<; 4 . and

�  � J 2 OPOPO 2 � 4 by�¸·¹"<"FEG9<; . 9 gQz n 2 � . &+ �{~}�� � , J]� �P� "F; .
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if
4º= � J ; = lm7 and

�¸·¹"<"FEG9<; . 9 gQz n 2 � . &+ �{~}�� ��� 4���� J<� ���� = �P�:� "F; � . �Q�
" � = .
if 6] XZc³e>g �]&¹; �  |7�n exists. Note that the latter case in the definition of �¢·
is possible only for E¨ z  �7 . If we define further� � - � "F'~�I"FEG9<; . 9 gQz n 2 � . &+ � � "F'~�I"FEG9<; . 9 gQz n 2 � .
and for 6 �x��� -� �+= , J©� "F'��I"FEG9<; . 9 gQz n 2 � . &+ «ª %- ª ��»�� ¼\�8½ ¬ � �+=f� "F']L�¾��I"V¿�9DÀ . 9 gQz n 2 � .2 ª ���f� Á~�8½ ¬ � � "F¾��I"FEG9<; . 9D­�"8�59<� .<. �¸·Â"<"8�59<� . 9D­�"V¿�9DÀ .<. �Ã"F¾ . ­¹¾
then the transient distribution is given as� "F'��I"FEG9<; . 9 gQz n 2 � .  #� = � - � �+=f� "F'~�I"FEG9<; . 9 gQz n 2 � . (2)

by conditioning on the number 6 of arrivals until time ' . Computing the tran-
sient distribution will be more efficient by using the same scheme as in remark
2. Since the probability of 6 arrivals until time ' tends to 0 as 6 tends to infinity,
the sum in (2) can be truncated while keeping the error arbitrarily small.

4. Stability

Let "ÅÄÃ�m&GE �|��� . denote the time instants of successive arrivals. Clearly,"ÅÄÃ�|&¦E �Æ��� . is a series of stopping times with respect to the canonical
filtration of the queueing process � . Further, define �¤�Ç&+ È��ÉSÊ�� as the
system state immediately before the E th arrival. Then �  "F� � &£E ��+� . is the embedded Markov chain immediately before arrival instants. Let�¸Ë "<"8�59<� . 9 gQz n 2 � . &+ � "F�¡� , J � gQz n 2 �¡Ì �¡�W È"8�59<� .<. denote the
transition probabilities of the chain � . Using the results of section 2, these
are given by� Ë "<"FEG9<; . 9 gQz n 2 � . «ª ¬ ª �- � � "F'��I"8�59<� . 9 gQz n 2 � . �Ã"F' . ­^'��¸·¹"<"FEG9<; . 9D­�"8�59<� .<. (3)
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for all EG9 z �)�+� - , ; � " ��*�,-G.54 , and
�Í�)w 4 . If the states are arranged

according to their first dimension (i.e. the number of waiting users), then the
transition probability kernel

� Ë
assumes the form

� Ë  ÏÎÐÐÐÑ
� - � - 7 7 7ÒOPOPO��J � J � - 7 7ÒOPOPO��Ó � Ó � J � - 7ÒOPOPO
...

...
. . . . . . . . . . . .

Ô\ÕÕÕÖ (4)

of a lower Hessenberg matrix with kernel entries. Here, the kernels are given
by � =<"F;�9 � .  � Ë "<"FEG9<; . 9 g ExL�6 ¶ � n 2 � .
and ��=<"F;R9 � .  � Ë "<"F6D9<; . 9 g 7�n 2 � .
for all EN�k6 �_�+� - , ; � " ��*�,-/.54 and

�×�xw 4 . By equation (3), remark 1 and
the definition of ��· we can write� = "F;R9 � .  «ª �- � � "F'��I"FE ¶ � 9<; . 9 g EØL�6 ¶ � n 2 � . �Ã"F' . ­^' (5)

as well as ��=D"F;R9 � .  «ª �- � � "F'��I"FE ¶ � 9<; . 9 g 7�n 2 � . �h"F' . ­^'
for

4º= � J ;>=]lm7 and

� = "F;�9 � .  «ª �- ª �- � � "F'~�I"87:9<� . 9 g 7�n 2 � . ­¹�
"F� = . �Ã"F' . ­¹'
for 6
 XZcfehg �_&?; �  Í7�n , � �  Ù; � for all �No Ù6 . Furthermore, we have� � , J "F;�9I" ��* ,- . 4 .  �� � "F;�9I" ��* ,- . 4 .K¶ � � "F;R9I" �+* ,- . 4 . and thus���Ã"F;R9I" �+* ,- . 4 .  � = � � , J � =D"F;�9I" ��* ,- . 4 .
for all E �_�+� - and ; � " �+* ,- .54 .

Matrices of this kind have been analyzed in Tweedie (1982). Define the
kernel

�  ÈÚ �= � - � = . This kernel equals the transition probability kernel
of the remaining service times immediately before arrival instants under the
condition that there always is at least one waiting user. This condition implies
that the servers behave independent from one another. Hence the stationary
distribution Û of the kernel

�
equals the

�
–fold product of the respective
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stationary distribution Ü for one server. The latter is given in Tweedie (1982),
p.389, as ÜKÝ 7:9<'©Þ� �ß£ª %- " � LN�
"F¾ .<. ­¹¾
for all ' ����* ,- , with àßN Æá �- � Lâ�
"F¾ . ­¹¾â¥ q denoting the mean service
time and defining ß�&+ )"�àß . ��J .

Define ãM"F; . &+ Ú �� � J E � �Ã"F;R9I" ��*£,-G. 4 . for all ; � " ��*�,-/. 4 . Then the
analogue to Neuts’ mean drift condition (see Neuts (1978), theorems 2 and
3) is given by formula (3.1) in Tweedie (1982), namelyª � � äÃåæ �Åç ãC"F; . Û/"8­^; . l � (6)

meaning that in the mean, there will be more than one service during an inter–
arrival time. This stability condition for the embedded chain � coincides with
the classical form àßN¥ � � àè (7)

of the stability condition (see Kiefer, Wolfowitz (1955)), with àè denoting
the mean inter–arrival time, i.e. àè  Ïá �- '¤�Ã"F' . ­^' (see remark 3 below).
Hence condition (6) is equivalent to the stability of the queueing process � ,
implying ergodicity of the embedded chain � (because the embedding is at
arrival instants, and thus reaching state "87:9D7 . under � means remaining in
state "87:9D7 . until the next arrival and hence reaching "87:9D7 . under � ).

Remark 3 The equivalence of the two forms (6) and (7) is shown by the
following arguments: The distribution Û has Lebesgue–density­¹Û/"F; .  4�= � J ßd" � Lâ�¤"F;�= .<. ­^;>=
for all ;² "F;RJQ9POPOPOQ9<; 4 . � " �+* ,- .54 . This means by definition of ã and
expressions (5) that

ª � � ähåæ �Åç ãC"F; . Û/"8­^; .  |ª �- ª � � äÃåæ �³ç � � � J E � � "F'��I"FEG9<; . 9 g � n 2 " �+* ,- . 4 .2 4�= � J ßd" � Lâ�¤"F;�= .<. ­^;KJKOPOPO�­^; 4 �Ã"F' . ­¹'
Now the inner integral equals the expected number of completed services
during an inter–arrival time ' under initial remaining service times ; J 9POPOPOI9<; 4
given that the number of waiting users will always remain positive. Under this
condition the servers work independently and hence the above expectation
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equals
�

times the respective expectation for one single server. The latter is
given by 0?%� � � � - ª %- � `5� "F'GL�; . ßd" � LN�
"F; .<. ­¹;
defining the iterated convolutions by � ` - "F'�L	; . &+ � , � `�J "F'�L¸; . &+ ��
"F'�L	; .
and � `5� , J "F'GLâ; . &+ A"8�Æé¦� `5� . "F'/L�; . for all ; j ' �Ø��* ,- . Now it is easy
to see that0�%� 
ß£ª %- " � LN�
"F; .K¶ �¤"F'iL�; . LN�
"F; . �
"F'iLN; .�¶ � ` Ó "F'GL�; . L§OPOPO . ­^; 
ß�'
since ª %- � `5� , J "F']L�; . ­^;_ «ª %ê � - ª %8� êë � - �
"F']L�;�LN¾ . ­¹� `5� "F¾ . ­¹; «ª %ë � - ª %8� ëê � - �
"F'iL�;�L�¾ . ­¹;�­�� `5� "F¾ . «ª %ë � - ª %8� ëê � - �
"F; . ­^;¤­¹� `5� "F¾ . «ª %ê � - ª %8� êë � - �
"F; . ­¹� `5� "F¾ . ­^; «ª %- �
"F; . � `5� "F'iLN; . ­¹;
for all E �_�+� - . Hence we haveª � � ähåæ �Åç ãC"F; . Û/"8­^; .  �ª �- � �Pß
']�h"F' . ­¹'/ � �Pß
� àè
which yields the equivalence.

5. Stationary Distribution

Let us assume in this section that the queueing process � and hence the em-
bedded chain � are ergodic. Then the stationary distribution can be derived in
a straightforward manner from Tweedie (1982) and standard renewal results.
This shall be explained shortly in this section.

As in representation (4), partition the state space by 0ì rí �� � - 0 � with0 �  g "8�59<; . &�; � " �+* ,- . 4 n called the � th level of 0 . Define the E –step taboo
probabilities with taboo level � �x��� - recursively by� � J "<"FEG9<; . 9 gQz n 2 � . &+ � Ë "<"FEG9<; . 9 gQz n 2 � .
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and � � � , J "<"FEG9<; . 9 gQz n 2 � . &+  � 4 � � , J ª � � äÃåæ � ç � Ë "<" � 9<� . 9 gQz n 2 � . � � � "<"FEG9<; . 9 g � n 2 ­^� .
for all EG9 z �_�+� - , ; � " �+* ,- . 4 and

�Æ�_w 4 .
Further define the kernel î�"F;�9 � . &+ Ú �� � J - � � "<"87:9<; . 9 g 7�n 2 � . . This

kernel represents the transition probability kernel of a Markov chain ï which
is embedded in the chain � at times of visiting level 7 . If � is ergodic, thenî has an invariant probability measure -�ð satisfying-Pð " � .  «ª � � äÃåæ �³ç î�"F�h9 � . -Pð "8­¹� .
for all

�Æ�_w 4 . The stationary distribution ð of the chain � is now given byñ &+ ð " g 7�n 2 0 .  óòôª � � ähåæ �³ç � � � J E
� - � � "<"87:9<� . 9 g 7�n 2 " �+* ,- . 4 . -Pð "8­^� .©õ
and ð " g 7�n 2 � .  ñ � -Pð " � .
at level 0, as well asð " g E]n 2 � .  ñ ��ª � � äÃåæ �³ç]ö � "F��9 � . -Pð "8­^� .
for E �x��� , with kernels ö � defined recursively by

ö J "F;�9 � . &+ � � � J - � � "<"87:9<; . 9 g � n 2 � .
and ö � "F;R9 � . &+ «ª � � äÃåæ � ç]ö "F�h9 � . ö �¹��J "F;�9D­^� .
for all E
l � . The kernel ö J can be obtained as the limit ö J  A± cfX ��´ � ö �with ö - &+ |7 and

ö ��"F;R9D� .  � } � - ª � � ä åæ �³ç � }¢"F��9D� . ö }�¹��J "F;R9D­¹� . (8)

for E �x��� , ö -� &+ � denoting the identity kernel, and ö }����J the z th iteration
of the kernel ö �¹��J .
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Having obtained the stationary distribution ð of � , the stationary distri-
bution ÷ of the queueing process � is given as follows: Denote

�£ø "F' . &+ � L á %- �Ã"F¾ . ­¹¾ as the complementary distribution function of the inter–arrival
time. Further define the kernelù % "<"FEG9<; . 9 gQz n 2 � . &+ � "$� % � gQz n 2 � 9 � lm' Ì � -  H"FEG9<; .<. (9) � ø "F' . � � � "F'��I"FEG9<; . 9 gQz n 2 � . (10)

with
�

denoting the first inter–arrival time. Then we finally have÷i" gQz n 2 � .  àè ��� � � } ª � � ähåæ �³ç ð "FEG9D­¹; . ª �- ù %\"<"FEG9<; . 9 gQz n 2 � . ­^' (11)

for all z �Æ��� - and
�Ï�Ww 4 . The sum may begin at E× z because of

representation (10) and remark 1.

6. An Example

In order to illustrate the algorithm given above, this section provides an ap-
plication of it to the GI/M/2 queueing system. Let the inter–arrival times
be iid with uniform distribution within the interval Ý 7:9 � Þ . The service time
distributions shall be chosen as exponential ones with some rate ß �|�+* , .
This queue is stable under the condition ßNl � (see condition (7)).

The choice of exponential service times leads to great simplifications, as
the memoryless behaviour of service facilities allows to neglect the service
time already passed. Instead, it suffices to keep track of the number of users
being served, which reduces the kernels in the above presentations to ma-
trices. Indeed, numerical methods for the calculus of general kernels have
not been developed as maturely yet as to provide calculation packages like
MatLab or Octave. First steps in this direction have been taken by Nielsen
and Ramaswami (1997), and this seems very promising as a start.

In the case of a GI/M/2 queue, the auxiliary state space can be reduced
decisively from " ��* ,- . Ó to g 7:9 � 9\ú�n . Hence, instead of kernels we have simpleû 2 û - matrices as the blocks which build the transition matrix

�¡Ë
(see equa-

tion (4) in section 4). They can be determined in a straightforward manner
as � -~ü - � -  � L �ßmý � Lâþ �Âÿ�� 9 � -~ü - � J� �ßmý � Lâþ �Âÿ�� 9 � -~ü - � Ó  �7:9� -~ü J<� -  � LN� -~ü J<� J LN� -~ü J<� Ó�9â� -~ü J<� J  �ß ý � Luþ �Âÿ � Ó
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11� -~ü J<� Ó� �ú�ß � � Lâþ � Ó ÿ��� -~ü Ó � -  � L�� -~ü Ó � J�LN� -~ü Ó � Ó L � -~ü Ó � Ó� -~ü Ó � JM |ú�� �ßmý � LNþ �Âÿ � Ó L �ß � � Lâþ � Ó ÿ " � ¶ ú�ß . �� -~ü Ó � Ó  �ú�ß � � Lâþ � Ó ÿ " � ¶ ú�ß . �
for the matrix � -  )"8� -~ü =F� � . -�� =F� � � Ó .

By definition of the queue and the auxiliary variable, the matrices
� � withE �_�+� - have positive entries only in position "Vú�9\ú . , since a positive number

of waiting users implies that all service facilities are busy. These entries are
easily determined as� � ü Ó � Ó  �ú�ß ò � Lâþ � Ó ÿ � } � - "Vú�ß . }z	� õ
for all E �§��� - . By the same argument, the entries �	� ü =F� � vanish for 6Zo @ú .
For the rest, we obtain��� ü Ó � -  � Lâ��� ü Ó � J/LN��� ü Ó � Ó L � } � - � } ü Ó � Ó
with ��� ü Ó � JM |ú���"8������J ü Ó � J/L � � , J ü Ó � Ó . and ��� ü Ó � Ó  � � , J ü Ó � Ó
for all E �_�+� .

Because of the structure of the matrices
� � , the kernel ö reduces to a

number which can be computed according to equation (8) without any prob-
lems. Denote by "8Û `� &RE ����� - . the distribution of the number of users in
the system immediately before arrivals. Then we have Û `�  |Û `Ó � ö ��� Ó for allE�� û , and because of that"8Û `- 9DÛ `J 9DÛ `Ó .  H"8Û `- 9DÛ `J 9DÛ `Ó . � ò � - ¶ � � � J ö � ��� õ
The entries of the matrix on the right can readily be computed.

The following results have been obtained from an implementation in Oc-
tave, a free MatLab version. The variation has been confined to the service
rate, since any variation of the upper bound of the interval for inter–arrival
times merely coincides with another time scaling. Because of Û `�  �Û `Ó � ö �¹� Ófor all E§� û , it suffices to show the results for Û `- , Û `J , Û `Ó , and ö . These are
given in the following table:
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12 Û `- Û `J Û `Ó öß¨ �
 0.4487 0.4097 0.1417 0.1463ß¨ û 0.4205 0.3828 0.1967 0.2088ß¨ «ú 0.3580 0.3439 0.2981 0.3608ß¨ � O
� 0.2141 0.2253 0.2543 0.5464ß¨ � O � 0.0722 0.0846 0.1123 0.8668ß¨ � O 7 � 0.0088 0.0106 0.0145 0.9852

Having computed the distribution "8Û `� &�E ���+� - . , the stationary distri-
bution of the queueing process can easily be computed according to equation
(11), which in the present case reduces to÷i" z .  �ú � � � � } Û `� ª J- " � L�' . � � "F'��<EG9 z . ­^'
for all z �W�+� - . The values for

�£� "F'~�<EG9 z . are determined in a straight-
forward manner, with the same arguments as used for the derivation of the
matrices

� � and ��� .
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