Assessment 1

NOTE: Please return your solutions to the SMSAS general office before noon on Tuesday, the 18th of November.

Exercise 1:

8 Marks
Let $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ denote a Markov chain with state space $E=\{1,2,3,4,5\}$ and transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 4 & 1 / 2 & 0 & 1 / 4 & 0 \\
1 / 3 & 0 & 2 / 3 & 0 & 0 \\
0 & 1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 0 & 1 / 4 & 1 / 4 \\
0 & 0 & 0 & 1 / 5 & 4 / 5
\end{array}\right)
$$

(a) Draw a transition graph for \mathcal{X}.
(b) Determine the conditional probability $\mathbb{P}\left(X_{2}=4 \mid X_{0}=1\right)$.

Exercise 2:

8 Marks
Let $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ denote a Markov chain with state space $E=\{1,2,3\}$ and transition matrix

$$
P=\left(\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 2 & 1 / 2
\end{array}\right)
$$

Determine the stationary distribution for \mathcal{X}. Why is this unique?

Exercise 3:

(a) Let $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ be a Markov chain with transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 4 & 3 / 4 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 2 / 3 \\
0 & 1 / 3 & 0 & 1 / 3 & 1 / 3 \\
0 & 0 & 0 & 1 / 2 & 1 / 2
\end{array}\right)
$$

(i) Determine the communication classes for \mathcal{X} and state which of them are recurrent and which are transient.
(ii) Determine the stationary distribution of \mathcal{X}.
(b) A Markov chain \mathcal{X} on a finite state space E is called doubly stochastic if its transition matrix $P=\left(p_{i j}\right)_{i, j \in E}$ satisfies the condition

$$
\sum_{i \in E} p_{i j}=1
$$

for all $j \in E$, i.e. if all its columns sum up to one.
(i) Give an example of a doubly stochastic Markov chain with state space $E=$ $\{1,2,3,4\}$.
(ii) For $E=\{1, \ldots, n\}$ with $n \in \mathbb{N}$, show that $\pi=(1 / n, \ldots, 1 / n)$ is a stationary distribution of \mathcal{X}.
(c) For the Markov chain from question 2, determine the mean recurrence time $\mathbb{E}\left(\tau_{1} \mid X_{0}=1\right)$, where $\tau_{1}:=\min \left\{n \geq 1: X_{n}=1\right\}$.

Exercise 4:

8 Marks
Let $\mathcal{Y}=\left(Y_{t}: t \geq 0\right)$ denote a Markov process with state space $E=\{1,2,3\}$ and generator matrix

$$
G=\left(\begin{array}{ccc}
-2 & 2 / 3 & 4 / 3 \\
1 & -2 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

Determine the holding time parameters and the transition matrix $P=\left(p_{i j}\right)_{i, j \in E}$ of the embedded Markov chain. You may assume that $p_{i i}=0$ for all $i \in E$.

