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Abstract

We approximate the resolvent of a one-dimensional diffusion process by the re-
solvent of a level dependent Brownian motion. This is a diffusion process with
piecewise constant parameters. The approximating resolvent is determined for the
case of a diffusion on an interval with absorbing barriers. A recursive scheme to
solve the two-sided exit problem for the approximating process is provided.
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1. Introduction

Diffusion processes serve as models for many phenomena in physics, biol-
ogy and economics, to name but a few application fields (see e.g. section 15.2 in
[4] for some examples). They further arise as approximations for many Markov
processes after rescaling and normalising (see [2]). Although many functionals,
like first passage probabilities or mean exit times, can be determined explicitly for
one-dimensional diffusions, many others still elude an exact solution.

There is of course a good reason for this. Diffusion processes arise as solu-
tions to some stochastic differential equations (SDEs, see section II.4.6-7 in [5]).
Even for one-dimensional and time-homogeneous SDEs, their deterministic coun-
terpart, which are ordinary differential equations (ODEs), have explicit solutions
only in special cases. Thus a general approach to solve SDEs can only be expected
in terms of numerical approximation schemes.

The vast majority of existing numerical schemes mimic the methods applied to
deterministic differential equations, resulting in the Euler scheme and refinements
thereof. The basic idea is a discretisation of the time axis and the determination
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of a suitable system of difference equations. Many examples of such schemes can
be found in [5].

While time discretisation of a one-dimensional ODE yields a finite sequence
of numbers as a result, the same method applied to a SDE results in a random
variable for each step in time and each fixed initial value. Hence, functionals like
transition probabilities can only be obtained by simulating many path realisations
under any fixed initial value (cf. the MCMC approach). This of course may
quickly amount to high computational costs.

The present paper aims to explore possibilities of a numerical approximation
that is based on a discretisation of the state space rather than the time axis. We
shall consider only one-dimensional diffusion processes, which correspond to so-
lutions of one-dimensional and time-homogeneous SDEs. We intend to derive
an approximation of the resolvent of a given diffusion process. This preserves
to a large degree the distribution of the process and allows to approximate func-
tionals like the stationary distribution without the need to recur to costly MCMC
methods.

The approximation of the resolvent is introduced in the following section. In
section 3, the approximating process is introduced in more detail. Section 4 con-
tains the determination of the approximating resolvent. The last section provides
a recursive scheme to solve the two-sided exit problem.

2. The approximation

Let X = (Xt : t ≥ 0) denote a one-dimensional diffusion process with a state
space E = [l, u] where l < u ∈ R. Denote the infinitesimal drift and variance
functions by µ : E → R and σ : E → R+, respectively. Assume that µ and σ
are Lipschitz continuous. Let T (t), t ≥ 0, denote the transition semi-group of X ,
acting on a suitable domain D as

T (t)f(x) := E (f(Xt)|X0 = x)

for all f ∈ D and x ∈ E. The generator of X is defined as

Af := lim
ε↓0

1

ε
(T (ε)f − f)

for all f ∈ D(A), the domain of A, and given by

Af(x) =
σ2(x)

2
f
′′
(x) + µ(x)f ′(x)
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for all x ∈ Eo =]l, u[, the interior of E. We assume that the boundaries are
absorbing.

Let Y = (Yt : t ≥ 0) denote a diffusion process with the same state space
E, but piecewise constant infinitesimal drift and variance functions µ̃ : E → R
and σ̃ : E → R+. Assume that they are given as µ̃(x) := µi and σ̃(x) := σi for
bi−1 < x ≤ bi and i = 1, . . . , N , where b0 := l and bN := u. Assume further that

sup
x∈Eo

(
|µ(x)− µ̃(x)|+ 1

2
|σ2(x)− σ̃2(x)|

)
< ε

The boundaries are assumed to be absorbing. Let T̃ (t), t ≥ 0, denote the transition
semi-group of Y and Ã its generator.

The fact that

d

ds
T (t− s)T̃ (s)f = −T (t− s)AT̃ (s)f + T (t− s)ÃT̃ (s)f

for t > s yields

T̃ (t)f − T (t)f =

∫ t

0

T (t− s)(Ã − A)T̃ (s)f ds (1)

cf. [2], lemma 6.2 of chapter 1. We are interested in the λ-resolvents

Rλ :=

∫ ∞
0

e−λsT (s) ds and R̃λ :=

∫ ∞
0

e−λsT̃ (s) ds

see proposition 2.1 of chapter 1 in [2]. Equation (1) yields

R̃λf −Rλf =

∫ ∞
0

e−λt
∫ t

0

T (t− s)(Ã − A)T̃ (s)f ds dt

=

∫ ∞
0

e−λt
∫ t

0

T (s)(Ã − A)T̃ (t− s)f ds dt

=

∫ ∞
s=0

e−λsT (s)(Ã − A)

∫ ∞
t=s

e−λ(t−s)T̃ (t− s)f dt ds

= Rλ(Ã − A)R̃λf

Since
‖Rλg‖ ≤

∫ ∞
0

e−λs‖T (s)g‖ds ≤ 1

λ
‖g‖
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for any g ∈ D, we obtain

‖R̃λf −Rλf‖ ≤
1

λ
‖(Ã − A)R̃λf‖

and in particular for g := R̃λf

‖R̃λf(x)−Rλf(x)‖ ≤ 1

λ

∥∥∥∥1

2
(σ̃2(x)− σ2(x))g

′′
(x) + (µ̃(x)− µ(x))g′(x)

∥∥∥∥
≤ |g

′(x) + g
′′
(x)|

λ
ε

for all x ∈ Eo. This implies weak convergence of the resolvents. The next two
sections are dedicated to determining R̃λ.

3. The approximating process

The approximating process Y = (Yt : t ≥ 0) may be called a level dependent
Brownian motion with a finite number of thresholds b0, . . . , bN . It is defined by
the stochastic differential equation

dYt =

{
µk dt+ σk dWt, bk−1 < Yt ≤ bk, 1 ≤ k ≤ N − 1

µN dt+ σN dWt, bN−1 < Yt < bN

where µi ∈ R and σi > 0 for i ≤ N , andW = (Wt : t ≥ 0) denotes the standard
Wiener process. Define the intervals Ik :=]bk−1, bk] for k ∈ {1, . . . , N − 1} and
IN :=]bN−1, bN [. We call Ik together with the parameters (µk, σk) the kth regime
of Y .

If N = 1, i.e. if there is only one regime, we call the process Y homogeneous
(in space). It is then of course a Brownian motion on an interval with absorbing
boundaries. Define

u±k = u±k (λ) :=
±µk −

√
µ2
k + 2λσ2

k

σ2
k

for k ≤ N . Within each regime Ik the behaviour of Y equals that of a classical
Brownian motion with λ-scale function W (λ)

k (x) := e−u
+
k x − eu−k x. For instance,

the exit times
τ(l, u) := inf{t ≥ 0 : Yt /∈ [l, u]}
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from an interval [l, u] ⊂ Ik are given by their Laplace transforms

Ψ+
k (u− l|x− l) := E

(
e−λτ(l,u);Yτ(l,u) = u|Y0 = x

)
=
e−u

+
k ·(x−l) − eu−k ·(x−l)

e−u
+
k ·(u−l) − eu−k ·(u−l)

(2)

for all x ∈ [l, u]. By reflection around the initial value x, we obtain further

Ψ−k (u− l|x− l) := E
(
e−λτ(l,u);Yτ(l,u) = l|Y0 = x

)
=
e−u

−
k ·(u−x) − eu+k ·(u−x)

e−u
−
k ·(u−l) − eu+k ·(u−l)

(3)

using the fact that the roles of u+
k and u−k are simply reversed for the Brownian

motion with parameters (−µk, σ2
k).

We now wish to determine the exit times of Y from an interval [bk−1, bk+1],
given that Y0 = bk. Abbreviate those by

τ(k) := inf{t ≥ 0 : Yt /∈ [bk−1, bk+1]} (4)

for k = 1, . . . , N − 1 and write ∆bk := bk − bk−1 for k = 1, . . . , N .

Theorem 1 For k = 1, . . . , N − 1, the distribution of the exit time τ(k), given
that Y0 = bk, is given by the Laplace transforms

E+(k) := E
(
e−λτ(k);Yτ(k) = bk+1|Y0 = bk

)
=

u+
k+1 + u−k+1

e−u
+
k+1·∆bk+1 − eu

−
k+1·∆bk+1

×

(
u+
k e
−u+k ·∆bk + u−k e

u−k ·∆bk

e−u
+
k ·∆bk − eu−k ·∆bk

+
u−k+1e

−u+k+1·∆bk+1 + u+
k+1e

u−k+1·∆bk+1

e−u
+
k+1·∆bk+1 − eu

−
k+1·∆bk+1

)−1

and

E−(k) := E
(
e−λτ(k);Yτ(k) = bk−1|Y0 = bk

)
=

u+
k + u−k

e−u
−
k ·∆bk − eu+k ·∆bk

×

(
u+
k e
−u+k ·∆bk + u−k e

u−k ·∆bk

e−u
+
k ·∆bk − eu−k ·∆bk

+
u−k+1e

−u+k+1·∆bk+1 + u+
k+1e

u−k+1·∆bk+1

e−u
+
k+1·∆bk+1 − eu

−
k+1·∆bk+1

)−1

for λ ≥ 0.
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Proof: We begin with the first statement and consider

E(ε) := E
(
e−λτ(k);Yτ(k) = bk+1|Y0 = bk + ε

)
First we assume that the regime changes at bk − ε for downward crossings of bk
and at bk + ε for upward crossings. Then we let ε ↓ 0. Summing up over the
number of down and up crossings of the interval [bk− ε, bk + ε] before leaving the
interval [bk−1, bk+1] at bk+1, we obtain

E(ε) =
∞∑
n=0

(
Ψ−k+1(∆bk+1 + ε|2ε)Ψ+

k (∆bk + ε|∆bk − ε)
)n

Ψ+
k+1(∆bk+1 + ε|2ε)

=
Ψ+
k+1(∆bk+1 + ε|2ε)

1−Ψ−k+1(∆bk+1 + ε|2ε)Ψ+
k (∆bk + ε|∆bk − ε)

Equations (2) and (3) along with L’Hospital’s rule now yield the first statement.
The proof of the second statement is completely analogous.
�

4. The resolvent

We consider the level dependent Brownian motion as in section 3 and seek to
find an expression for its resolvent density function r̃λ(x, y), defined by

r̃λ(x, y)dy := R̃λ(x, dy) = E
(∫ ∞

0

e−λt1{Yt∈dy} dt |Y0 = x

)
for λ > 0. Let E(λ) denote an independent exponential time of parameter λ. Then
R̃λ(x, dy) is simply the probability that Y is located in dy before the exponential
time E(λ) has expired. We separate any path of Y from x to y within the time
E(λ) into three parts.

First, if x /∈ {b1, . . . , bN}, denote the probabilities of hitting the next up-
per/lower grid point before E(λ) by p±1 (x). Let r(x) denote the regime of x, i.e.
r(x) = k if x ∈ Ik, k ∈ {1, . . . , N}. With k := r(x) and ∆bk := bk − bk−1 the
values p±1 (x) are given by

p±1 (x) = Ψ±k (∆bk|x− bk−1) (5)

cf. (2) and (3).
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The second part of the path consists of movements among the grid points
b0, . . . , bN before E(γ). To this aim, define the square matrix P = (pij)0≤i,j≤N of
dimension N + 1 by

pij :=


1, j = i ∈ {0, N}
E+(i), j = i+ 1, i ∈ {1, . . . , N − 1}
E−(i), j = i− 1, i ∈ {1, . . . , N − 1}
0 else

Theorem 2 Define the hitting times T (x) := min{t ≥ 0 : Yt = x} for all x ∈ E.
Further define the matrix M = (mij)0≤i,j≤N by M := (I − P )−1. Then

mij = E
(
e−λT (bj)|Y0 = bi

)
= P(T (bj) < E(λ)|Y0 = bi)

for all i, j ≤ N .

Proof: We first observe that

E−(k) = P
(
τ(k) < E(λ), Yτ(k) = bk−1|Y0 = bk

)
and

E+(k) = P
(
τ(k) < E(λ), Yτ(k) = bk+1|Y0 = bk

)
Thus P is sub-stochastic with the kth row sum

e′kP1 = 1− P(τ(k) > E(λ)|Y0 = bk) < 1

for k = 2, . . . , N − 1, where e′k denotes the kth canonical row base vector and
1 the column vector with all entries being 1. Due to the memoryless property of
the exponential distribution, the matrix M = (I − P )−1 =

∑∞
n=0 P

n contains the
probabilities mij of hitting state bj before E(λ), given that Y0 = bi.
�

The last part is a movement from a grid point to y before E(λ) without hitting
another grid point in between. Thus we are interested in the occupation measures

lk(y)dy := E

(∫ τ(k)

0

e−λtI{Yt∈dy} dt|Y0 = bk

)

where bk−1 < y < bk+1.
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Theorem 3 Define

mk(y) =
e−u

+
k+1·(bk+1−y) − eu

−
k+1·(bk+1−y)

e−u
+
k+1·∆bk+1 − eu

−
k+1·∆bk+1

I{y>bk}

+
e−u

−
k ·(y−bk−1) − eu+k ·(y−bk−1)

e−u
−
k ·∆bk − eu+k ·∆bk

I{y<bk}

and further

h+
k =

u+
k e
−u+k ·∆bk + u−k e

u−k ·∆bk

e−u
+
k ·∆bk − eu−k ·∆bk

, h−k+1 =
u−k+1e

−u−k+1·∆bk+1 + u+
k+1e

u+k+1·∆bk+1

e−u
−
k+1·∆bk+1 − eu

+
k+1·∆bk+1

Then

lk(y) = − mk(y)

h+
k + h−k+1

for bk−1 < y < bk+1.

Proof: The density function lk(y) is the product of the occupation density at bk
before min{τ(k), E(λ)} and the occupation density at y before returning to bk and
before min{τ(k), E(λ)}. Thus we write lk(y) = dk ·mk(y).

The first factor, the occupation density at bk, is obtained as

dk := lim
ε↓0

2ε(1− h−k+1(ε)h+
k (ε))−1

cf. [3], section 2.4, where

h−k+1(ε) = Ψ−k+1(∆bk+1 + ε|2ε) and h+
k (ε) = Ψ+

k (∆bk + ε|∆bk − ε)

Since limε↓0 h
−
k+1(ε) = limε↓0 h

+
k (ε) = 1, we can write

lim
ε↓0

2ε(1− h−k+1(ε)h+
k (ε))−1 = −2

(
d

dε
h−k+1(ε)h+

k (ε)

∣∣∣∣
ε=0

)−1

where
d

dε
h−k+1(ε)

∣∣∣∣
ε=0

= 2
u−k+1e

−u−k+1·∆bk+1 + u+
k+1e

u+k+1·∆bk+1

e−u
−
k+1·∆bk+1 − eu

+
k+1·∆bk+1

(6)

and
d

dε
h+
k (ε)

∣∣∣∣
ε=0

= 2
u+
k e
−u+k ·∆bk + u−k e

u−k ·∆bk

e−u
+
k ·∆bk − eu−k ·∆bk

(7)
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Thus dk = −
(
h+
k + h−k+1

)−1. Note that dk > 0 for λ > 0, since u±k < 0 for all
k ≤ N .

The second factor in lk(y) is the occupation density at y before returning to
bk and before min{τ(k), E(λ)}. Denote this by mk(y). Exploiting the Siegmund
duality (see [1]), we consider the time-reversed process Yr. This is defined as a
Brownian motion with parameters (−µk, σk) in the kth regime. Define

u±,rk :=
∓µk −

√
µ2
k + 2λσ2

k

σ2
k

= u∓k (8)

for k = 1, . . . , N . Then

mk(y) =

{
Ψ−,rk+1(∆bk+1|y − bk), y > bk

Ψ+,r
k (∆bk|y − bk−1), y < bk

(9)

where

Ψ−,rk+1(∆bk+1|y − bk) =
e−u

−,r
k+1·(bk+1−y) − eu

+,r
k+1·(bk+1−y)

e−u
−,r
k+1·∆bk+1 − eu

+,r
k+1·∆bk+1

and

Ψ+,r
k (∆bk|y − bk−1) =

e−u
+,r
k ·(y−bk−1) − eu

−,r
k ·(y−bk−1)

e−u
+,r
k ·∆bk − eu−,r

k ·∆bk

Now the second equality in (8) yields the statement.
�

If r(x) = r(y), then it is possible to reach y from x before E(λ) without hitting
any threshold bk, k ≤ N .

Theorem 4 Define

m(x, y) =
e−u

+
k ·(bk−y) − eu−k ·(bk−y)

e−u
+
k ·(bk−x) − eu−k ·(bk−x)

I{y>x} +
e−u

−
k ·(y−bk−1) − eu+k ·(y−bk−1)

e−u
−
k ·(x−bk−1) − eu+k ·(x−bk−1)

I{y<x},

h−(x) :=
u−k e

−u−k ·(bk−x) + u+
k e

u+k ·(bk−x)

e−u
−
k ·(bk−x) − eu+k ·(bk−x)

,

and

h+(x) :=
u+
k e
−u+k ·(x−bk−1) + u−k e

u−k ·(x−bk−1)

e−u
+
k ·(x−bk−1) − eu−k ·(x−bk−1)
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Then

p0(x, y)dy := E

(∫ τ(bk−1,bk)

0

e−λtI{Yt∈dy} dt|Y0 = x

)
= − m(x, y)

h+(x) + h−(x)
dy

for r(x) = r(y) = k.

Proof: This is shown by the same arguments as theorem 3. We can determine
p0(x, y) as the product of d(x) and m(x, y), where d(x) is the occupation density
at x before min{τ(bk−1, bk), E(λ)} and m(x, y) is the occupation density at y
before returning to x and before min{τ(bk−1, bk), E(λ)}.

The first factor is obtained as d(x) = limε↓0 2ε(1−h−(x, ε)h+(x, ε))−1, where

h−(x, ε) = Ψ−k (bk−x+ ε|2ε) and h+(x, ε) = Ψ+
k (x− bk−1 + ε|x− bk−1− ε)

Since limε↓0 h
−(x, ε) = limε↓0 h

+(x, ε) = 1, we can write

lim
ε↓0

2ε(1− h−(x, ε)h+(x, ε))−1 = −2

(
d

dε
h−(x, ε)h+(x, ε)

∣∣∣∣
ε=0

)−1

where

d

dε
h−(x, ε)

∣∣∣∣
ε=0

= 2
u−k e

−u−k ·(bk−x) + u+
k e

u+k ·(bk−x)

e−u
−
k ·(bk−x) − eu+k ·(bk−x)

= 2h−(x)

and

d

dε
h+(x, ε)

∣∣∣∣
ε=0

= 2
u+
k e
−u+k ·(x−bk−1) + u−k e

u−k ·(x−bk−1)

e−u
+
k ·(x−bk−1) − eu−k ·(x−bk−1)

= 2h+(x)

This yields d(x) = −(h−(x) + h+(x))−1.
The second factor m(x, y) is given in terms of the time-reversed process Yr,

namely

m(x, y) =

{
Ψ−,rk (bk − x|y − x), y > x

Ψ+,r
k (x− bk−1|y − bk−1), y < x

Now the formulas (2), (3), and the second equality in (8) yield the statement.
�
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Assembling the above results, the resolvent density r̃(x, y) can now be given
explicitly as

r̃(x, y) = p−1 (x)
N−1∑
k=2

mr(x)−1,k lk(y) + p+
1 (x)

N−1∑
k=2

mr(x),k lk(y)

+ I{r(x)=r(y)}p0(x, y)

for y /∈ {b0, . . . , bN} and

r̃(x, y) = p+
1 (x)mr(x),i + p−1 (x)mr(x)−1,i

for y = bi and i ∈ {0, . . . , N}. The ingredients are given in (5) and theorems 2-4.

5. Exit problems

We wish to derive Laplace transforms for the exit times

τ(l, u) := inf{t ≥ 0 : Yt /∈ [l, u]}

from an interval [l, u] ⊂]b0, bN [ in the form of

E+(l, a, u) := E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = a

)
where l < a < u and λ ≥ 0. The derivations for

E−(l, a, u) := E
(
e−λτ(l,u);Yτ(l,u) = l|Y0 = a

)
are analogous.

5.1. The two-sided exit problem for two regimes
We first restrict our considerations to the case N = 2, i.e. one threshold b1

dividing two regimes I1 =]b0, b1] and I2 =]b1, b2[. There are some simple cases,
namely

E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = a

)
=

{
Ψ+

1 (u− l|a− l), l < a < u < b1

Ψ+
2 (u− l|a− l), b1 < l < a < u

For the other cases we obtain, by path continuity,

E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = a

)
= Ψ+

1 (b−l|a−l) E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = b1

)
11



for l < a < b1 < u, and

E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = a

)
= Ψ+

2 (u− b1|a− b1)

+ Ψ−2 (u− b1|a− b1) E
(
e−λτ(l,u);Yτ(l,u) = u|Y0 = b1

)
for l < b1 < a < u. Thus it suffices to determine E+(l, b1, u). The same argu-
ments as in theorem 1 yield with k = 1

E+(l, bk, u) =
u+
k+1 + u−k+1

e−u
+
k+1·(u−bk) − eu

−
k+1·(u−bk)

×

(
u+
k e
−u+k ·(bk−l) + u−k e

u−k ·(bk−l)

e−u
+
k ·(bk−l) − eu−k ·(bk−l)

+
u−k+1e

−u+k+1·(u−bk) + u+
k+1e

u−k+1·(u−bk)

e−u
+
k+1·(u−bk) − eu

−
k+1·(u−bk)

)−1

and

E−(l, bk, u) =
u+
k + u−k

e−u
−
k ·(bk−l) − eu+k ·(bk−l)

×

(
u+
k e
−u+k ·(bk−l) + u−k e

u−k ·(bk−l)

e−u
+
k ·(bk−l) − eu−k ·(bk−l)

+
u−k+1e

−u+k+1·(u−bk) + u+
k+1e

u−k+1·(u−bk)

e−u
+
k+1·(u−bk) − eu

−
k+1·(u−bk)

)−1

for λ ≥ 0.

5.2. The two-sided exit problem for N > 2 regimes
For h := min{n ≥ 1 : bn > l}, the matrixE+(l, bh, bh+1) has been determined

in the previous subsection. Define k := max{n ≥ 1 : bn < u}. If k = h, then
E+(l, a, u) is given by the previous results. Thus assume that k > h ≥ 1. We
obtain by path continuity

E+(l, a, u) = E+(l, a, bk)E
+(l, bk, u)

where

E+(l, bk, u) = E+(bk−1, bk, u) + E−(bk−1, bk, u)E+(l, bk−1, bk)E
+(l, bk, u)

This yields

E+(l, bk, u) =
(
I − E−(bk−1, bk, u)E+(l, bk−1, bk)

)−1
E+(bk−1, bk, u)

Since the matrices E+(bk−1, bk, u) and E−(bk−1, bk, u) have been determined in
the previous subsection, this provides a recursion scheme for E+(l, a, u).
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