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Abstract

Consider an M/G/c queue with homogeneous servers and service time
distributionF . It is shown that an approximation of the service time distri-
butionF by stochastically smaller distributions, sayFn, leads to an approx-
imation of the stationary distributionπ of the original M/G/c queue by the
stationary distributionsπn of the M/G/c queues with service time distribu-
tionsFn. Here all approximations are in weak convergence. The argument
is based on a representation of M/G/c queues in terms of piecewise deter-
ministic Markov processes as well as some coupling methods.

1 Introduction

Multi–server queues are typical elements of stochastic models in application ar-
eas like computer or communication networks. However, numerically feasible
methods of their analysis are still to be developed. Some qualitative results, such
as stability conditions or the form of the stationary distribution, can be found in
Kiefer and Wolfowitz [12], Breuer [7], and Asmussen [1], chapter XII.

On the other hand, multi–server queues with Markovian service time distri-
butions can be readily analyzed by standard methods (see e.g. Neuts [16] for
the PH/M/c and the GI/PH/c queues). Steady–state waiting time distributions for
this case have been computed in Asmussen and Moller [3]. Lucantoni and Ra-
maswami [15] provide efficient algorithms to compute the stationary distribution
of the GI/PH/c queue.
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The class PH of phase–type service time distributions appearing here is al-
most as tractable as the class of exponential distributions, yet sufficiently versatile
as to be dense in the class of all distributions on the time axis (see Schassberger
[19], section I.6). Statistical procedures for fitting PH distributions are given in
Asmussen [4]. The versatility of the class PH gives rise to the wide–spread be-
lieve that an approximation of general multi–server queuesshould be possible by
approximating the general service time distributions by PHdistributions.

The purpose of the present paper is to validate this conjecture by a proof which
is applicable to a large class of multi–server queues. Although the motivation to
study continuity of multi–server queues stems mainly from the tractability of the
special case having phase–type service time distributions, the proofs in this paper
do not require any phase–type assumption. However, the arguments do require
that the approximating service time distributions are stochastically smaller than
the original one.

Previous results on approximating multi–server queues aresummarized in
Stoyan [20] and Kimura [13]. Rachev [18], chapter 12, contains results on the
stability of single–server queues. Asmussen and Johansen [2] have proven conti-
nuity of the mean stationary waiting time for the GI/G/c queue. The present paper
is concerned with continuity of the stationary distributions.

In a rough outline, the argument proceeds as follows: First the general multi–
server queue is modelled as a piecewise deterministic Markov process (PDMP),
using auxiliary variables for the remaining service times at each server. This leads
to a Markov chain at jump epochs, for which the transition probability kernel can
be derived explicitly. Its form shows that an approximationof the original service
time distribution by stochastically smaller distributions yields an approximation of
the transition kernel. This implies an approximation of thestationary distribution
of the Markov chain embedded at jump epochs. As the transformation from the
embedded stationary distribution to the stationary distribution of the queueing
process is continuous and does not involve the service time distribution, the above
approximation suffices to establish the result.

The paper is organized as follows: Section 2 contains a shortpresentation of
basic notations and results for PDMPs. A representation of the M/G/c queueing
process by means of PDMPs is given in section 3. Finally in section 4 it is shown
how an approximation of the service time distribution implies an approximation
of the stationary distribution of the queueing process.
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2 Piecewise deterministic Markov processes

Piecewise deterministic Markov processes (PDMPs) are a powerful generaliza-
tion of Markov jump processes. They have initially been analyzed by means of
martingale theory aiming at more general models for optimalcontrol theory. In
the 1990s, Costa and Dufour [8, 11] achieved to find methods for deriving the
stationary distribution of a PDMP, using either the embedded Markov chain after
jump times or the special structure of its resolvent. For an extensive presentation
of and a bibliography for PDMPs see Davis [10].

PDMPs are a generalization from Markov jump processes with respect to three
main features. The state space now is not constrained to a countable set anymore,
but will be allowed to be continuous. Second, between jumps the process is not
restricted to remain constant, but may change deterministically. On the one hand
this clearly is a great enhancement of modelling power, but on the other hand the
fact that the moves between jumps are deterministic keeps the stochastic complex-
ity of the process essentially on the level of a Markov jump process. Finally, the
possibility of movements between jumps gives rise to a new kind of jump, namely
jumps which occur immediately upon reaching a certain state. For queueing sys-
tems this usually will be the case whenever a server becomes idle and receives a
new user immediately. This new kind of jump will be called intrinsic jump, since
it is induced exclusively by the state of the system. The other kind of jump, as
induced by Markovian arrivals, will be called an extrinsic jump.

LetX = (Xt : t ∈ R+) denote a continuous–time Markov process with a Pol-
ish state spaceE. Denote byE theσ–algebra generated by the Borel subsets ofE.
The processX shall be determined by the following characteristic representation:

• A flow φ : E × R
+ → E onE.

• A closed set∆ ∈ E containing the states that induce intrinsic jumps.

• A function λ : E → R+ satisfyingsupx∈E λ(x) < λmax < ∞. The value
λ(x) indicates the intensity of an extrinsic jump occurring if the processX
is in statex .

• A stochastic transition measureQ : E×E0 → [0, 1] with E0 := E∩(E \ ∆),
describing the behaviour upon (extrinsic and intrinsic) jumps.

First define for allx ∈ E0 := E \ ∆ the deterministic variable

t∗(x) := inf{t ∈ R
+ : φ(x, t) ∈ ∆}
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as the time until the set∆ is reached from a statex ∈ E. Then define the random
variableT (x) of the first (intrinsic or extrinsic) jump time after starting in statex.
This is distributed as

P(T (x) > t) =

{

e−
R t

0
λ(φ(x,u))du t < t∗(x)

0 t ≥ t∗(x)

for all t ∈ R+. We need to assume that there are only finitely many jumps ofX in
any finite interval. In the queueing application presented in section 3, this will be
trivial to verify.

The PDMPX evolves in the following way: Starting in any statex ∈ E \ ∆,
it changes deterministically according to the flowΦ until it enters∆, inducing an
intrinsic jump, or an extrinsic jump occurs. Upon a jump, thestate ofX changes
immediately according to the transition measureQ, leading to a statey ∈ E \ ∆.
Then the process starts a new cycle, behaving as described until the next jump.

Given the specification of a PDMPX , one way to determine its stationary
distribution is described in Costa [8]. LetZ0 = X0 denote the initial state andZn

the state ofX after thenth jump. ThenZ = (Zn : n ∈ N0) is called the Markov
chain associated toX . If Z has a stationary distributionπ satisfying

∫

E

∫ t∗(x)

0

e−Λ(t,x) dt dπ(x) < ∞

whereΛ(t, x) :=
∫ t

0
λ(φ(x, u)) du, then a stationary distribution forX can be

constructed as follows: Define the setM := {(x, t) ∈ E × R+ : t < t∗(x)}
and denote the Borelσ–algebra onM by M. For any setA ∈ E and measurable
functionst1, t2 : E → [0,∞] with t1(x) < t2(x) ≤ t∗(x) for all x ∈ E define

Bt1,t2
A := {(x, t) ∈ M : t1(x) ≤ t < t2(x), x ∈ A}

νπ(Bt1,t2
A ) :=

∫

A

∫ t2(x)

t1(x)
e−Λ(t,x) dt dπ(x)

∫

E

∫ t∗(x)

0
e−Λ(t,x) dt dπ(x)

(1)

By this definitionνπ can be uniquely extended to a measure onM. Using the
measurable restriction of the flow functionφ : M → E to the setM , we obtain a
measureνπφ−1. By theorem 2 of Costa [8] this is the stationary distribution ofX .

3 The M/G/c queue as a PDMP

Consider an M/G/c queue with the following characteristics. The Poisson input
shall have rateλ. The service time distribution shall be denoted byF , being equal
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for each of thec servers.
This queue can be described as a piecewise–deterministic Markov process in

the following way. Define a state spaceE := N0 × R
c
+, where for(n, x) =

(n, x1, . . . , xc) ∈ E the first componentn represents the number of users waiting
in the queue and the componentsxi represent the remaining service time at theith
server. If theith server is idle, thenxi = 0.

A flow functionφ onE shall be defined by

φt(n, x) := (n, (x1 − t)+, . . . , (xc − t)+) (2)

for all (n, x) = (n, x1, . . . , xc) ∈ E andt ∈ R+, with (s − t)+ := max(0, s − t)
for all s, t ∈ R.

We define further for allx = (x1, . . . , xc) ∈ R
c
+ the value

t∗(x) :=

{

min{xi : 1 ≤ i ≤ c, xi > 0} for x 6= 0
∞ for x = 0

(3)

This denotes the time until the next server will become idle.
Differing from Davis [9] and Costa, Dufour [11], we will introduce two transi-

tion measuresQ1 andQ2 for the jumps that can occur. This reflects the queueing
process more transparently.Q1 is the transition measure for arrivals, and thus we
define for all(n, x) = (n, x1, . . . , xc) ∈ E andA = A1 × . . . × Ac

Q1((n, x), {m}×A) :=











δm,n+1 · 1A(x) for
c
∏

i=1

xi > 0

δm,n ·
∏

j 6=i

1Aj
(xj) · F (Ai) for i = min{l : xl = 0}

(4)
Note that the latter case in the definition ofQ1 is possible only forn = m = 0.

The second transition measureQ2 refers to the case of a server becoming idle.
If there are any waiting users in the queue, it immediately will commence to serve
a new user. Thus we have

Q2((n, x), {m} × A) :=

{

δm,n−1 ·
∏

j 6=i

1Aj
(xj) · F (Ai) for n ≥ 1, xi = 0

δm,n · 1A(x) for n = 0
(5)

Note that for the casen ≥ 1, only one server can be idle at a time. Since the
queue has Poisson single arrival input, the probability that two servers finish their
work at the same time instant is zero. Furthermore, if one server had become idle
before the other server and there had been any waiting users in the queue, it would
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have commenced serving one of them. Also note that the casen = 0 does not
correspond to a jump in the given formulation of the PDMP model. However, we
could reformulate the state space, sayE = (N0×R

c
+)∪

⋃c−1
k=1 R

k
+∪{0}, such that

it suits exactly the specification in Davis [10]. Then we would observe jumps for
the casen = 0, too. In order to simplify the presentation of the model, we chose
to accept this slight inaccuracy.

In our queueing application, we haveΛ(x, t) = λ · t. The transition kernel of
the embedded Markov chainZ = (Zn : n ∈ N0) at jump times is given as

P ((n, x), {m} × A) =

∫ t∗(x)

0

e−λsλQ1((n, x − s · 1), {m} × A) ds

+ e−λt∗(x)Q2((n, x − t∗(x) · 1), {m} × A)

with 1 denoting thec–dimensional column vector with all entries equal to one. It
can be arranged by its first component in anN0 × N0–matrix with kernel entries
denoted as in

P (x, A) =















P00(x, A) P01(x, A) 0 0 0 . . .
P10(x, A) 0 P01(x, A) 0 0 . . .

0 P10(x, A) 0 P01(x, A) 0 . . .

0 0 P10(x, A) 0 P01(x, A)
. . .

...
...

. . . . . . . . . . . .















The blockwise skip–free (or QBD) structure is due to the factthat there are only
single arrivals and service completions at a jump time ofX . The blockwise
Toeplitz structure follows from the product form of the jumpkernelsQ1 andQ2

in (4) and (5).
For our purposes it is enough to notice that the constructionof νπφ−1 at the

end of section 2 does not involve the service time distribution of the queue. This
suffices to prove

Theorem 1 LetX andXn, n ∈ N, denote PDMPs with embedded Markov chains
Z andZn, n ∈ N, respectively. Further letπ, µ andπn, µn denote the stationary
distributions ofZ, X andZn, Xn respectively. Then weak convergenceπn → π
implies weak convergenceµn → µ.

Proof: Since the flow functionφ is continuous and identical for all processesX
andXn, n ∈ N, it suffices by theorem 5.1 of Billingsley [5] to show that weak
convergenceπn → π implies weak convergenceνπn

→ νπ. By (1) and the special
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form of Λ(x, t) we obtain for continuous and bounded functionsf : E → R and
g : R+ → R

∫

f(x)g(t)dνπ(x, t) = C−1 ·

∫

E

f(x)

∫ t∗(x)

0

g(t)e−λt dt dπ(x)

with C =
∫

E

∫ t∗(x)

0
e−λt dt dπ(x). As t∗(x) is continuous inx, the integrand

f(x)
∫ t∗(x)

0
g(t)e−λt dt is continuous inx, too. Following §8.4 in Breiman [6],

this completes the proof.
�

4 The Approximation

In this section it is shown that an approximation of the service time distribution
F by stochastically smaller distributions, sayFn, leads to an approximation of the
stationary distributionπ of the original M/G/c queue by the stationary distribu-
tionsπn of the M/G/c queues with service time distributionsFn.

Let (Fn : n ∈ N) denote a sequence of distribution functions that converge
weakly toF . This means that bounded and continuous functionsf : R+ → R

satisfy
∫

fdFn →

∫

fdF as n → ∞

By the same construction as in the previous section, the M/G/c queues with service
time distributionFn lead to transition kernelsPn of the Markov chains embedded
at jump times. These have the same structure asP , and the same expressions for
the subkernelsPn;ij, with i, j ∈ {0, 1}, except for a substitution ofF by Fn. Note
thatPij andPn;ij differ only for j = 0.

Lemma 1 The weak convergence

Pn(x, .) → P (x, .) as n → ∞

holds uniformly for allx ∈ E.

Proof: It suffices to show fori ∈ {0, 1} andx ∈ R
c
+ thatPn;i,0(x, .) → Pi,0(x, .)
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weakly asn → ∞. Again following Breiman [6], §8.4, it suffices to verify
∫

f1(y1) . . . fc(yc)Pn;i,0(x; dy1, . . . , dyc)

→

∫

f1(y1) . . . fc(yc)Pi,0(x; dy1, . . . , dyc)

asn → ∞ for all bounded and continuous functionsfk : R+ → R, 1 ≤ k ≤ c.
However, given the product form of the kernels in (4) and (5),this is an immediate
consequence of the assumption thatFn → F weakly. Furthermore, the conver-
gence is uniform inx ∈ R

c
+.

�

Lemma 2 The higher order iterates ofPn converge weakly to the ones ofP , i.e.
for all k ∈ N and bounded and continuous functionsf : E → R the limit

∫

f(y)P k
n (x, dy) →

∫

f(y)P k(x, dy) as n → ∞

holds uniformly forx ∈ E.

Proof: Fork = 1 this is the statement of lemma 1. The induction step fromk − 1
to k is seen as follows. First of all abbreviate for a kernelK and a functionf the
functionKf(x) :=

∫

f(y)K(x, dy). For any bounded and continuous function
f : E → R andx ∈ E we can write

P k
nf(x) − P kf(x) = P k−1

n (Pnf(x) − Pf(x)) + (P k−1
n − P k−1)Pf(x) (6)

By proposition 4.9 in Costa and Dufour [11], the kernelP is weak Feller, which
means that the functionPf is again bounded and continuous. By induction hy-
pothesis there is anN1 ∈ N such that the last term of the sum above satisfies

|P k−1
n Pf(x) − P k−1Pf(x)| < ε

for n ≥ N1 and uniformly inx, given anyε > 0. The casek = 1 states that there
is someN2 ∈ N such that

|Pnf(x) − Pf(x)| < ε

for n ≥ N2 and uniformly inx. SincePn and thus every iterate is stochastic, the
absolute value of the first term in (6) is bounded byε, too.
�

8



At this point we should take a look at the periodicity of the embedded Markov
chainsZ andZn. The times of jumps correspond to all arrivals and departures
of the system processes. HenceZ andZn have period 2. The state space is
partitioned asE = E0 ∪ E1 with E0 and E1 comprising all states with even
and odd numbers of users in the system, respectively. Letπ′, π′

n (resp.π′′, π′′
n)

denote the stationary distributions of the embedded chainswith transition matrix
P 2 which are supported byE0 (resp.E1). Then we can write

π =
1

2
(π′ + π′′) =

1

2
(π′ + π′P ) (7)

SinceP is weak Feller, it now suffices to showπ′
n → π′ in weak convergence.

Note that lemma 2 withk = 2 now yields the equivalent to lemma 1. Denote the
embedded Markov chains with transition matricesP 2, P 2

n and supportE0 by Z ′

andZ ′
n, respectively. These are aperiodic.

The approximationFn → F of the service time distribution can be chosen in
such a way thatFn is stochastically smaller thanF (we writeFn ≤d F , see Stoyan
[20]) for all n ∈ N. Writing E(F ) =

∫

t dF (t), this impliesE(Fn) ≤ E(F ) such
that

λ · E(Fn) < c (8)

for all n ∈ N. For a kernelK and a measureµ on (E, E), denote the measure
∫

K(x, .)dµ(x) by µK. Let δα denote the Dirac measure onα := {(0, 0)}. The
above condition (8) guarantees convergence

‖δαP 2k
n − π′

n‖ → 0 and ‖δαP 2k − π′‖ → 0 ask → ∞ (9)

against invariant probability measuresπ′
n andπ′ (see Orey [17], with C–set or

atomα ). This convergence is in total variation and thus entails weak convergence.
The next lemma compares the convergence speed of positive recurrent Markov

chains with an atom. Since it may be of independent interest,too, it is formulated
in slightly more general terms.

Lemma 3 Let Y = (Yn : n ∈ N0) andY ′ = (Y ′
n : n ∈ N0) denote positive recur-

rent Markov chains with the same state spaceE and an atomα ∈ E. Denote their
stationary distributions byπ andπ′, respectively. Further denote their stationary
versions (with initial distributionπ andπ′) by Ys andY ′s, and the versions with
initial distributionδα (being the Dirac measure onα) byYα andY ′α, respectively.
Define coupling timesT andT ′ by

T := min{n ∈ N : Y s
n = Y α

n = α} and T ′ := min{n ∈ N : Y ′s
n = Y ′α

n = α}
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Let τα andτ ′
α denote the recurrence times to stateα for the chainsYα andY ′α,

respectively. ThenT ′ ≤d T if τ ′
α ≤d τα.

Proof: Let (fk : k ∈ N) and(f ′
k : k ∈ N) denote the distribution ofτα andτ ′

α,
respectively. Note that

π′(α) =

(

∞
∑

k=1

kf ′
k

)−1

≥

(

∞
∑

k=1

kfk

)−1

= π(α)

This shows that for anyi, j ∈ N, the stochastic inequality

1α(Y s
i ) ≤d 1α(Y ′s

j ) (10)

holds. Of course it does not hold in general for all pairs(i, j) simultaneously, but
only for any choice ofi, j ∈ N. We will specify this choice below.

Now consider a coupling forτα andτ ′
α. Denote their distribution functions

by F andF ′, and define the quantile functionsh := F−1 andh′ := (F ′)−1 as
generalized inverses ofF andF ′. By Lindvall [14], section IV.3, the inequality
τ ′
α ≤d τα means thath′(U) ≤ h(U) for a uniform random variableU ∼ U(0, 1).

By definition ofT , we obtain the inclusion

{T = n} ⊂ {Y α
n = α} ∩ {Y s

n = α}

for everyn ∈ N. For every element of{Y α
n = α} there is an integerk ≤ n

and realisationsu1, . . . , uk of iid uniform random variablesU1, . . . , Uk such that
n =

∑k

i=1 h(ui). This integerk indicates the number of visits toα before the
visit at timen. The random variablesU1, . . . , Uk can be chosen as iid, since the
successive recurrence times toα are iid themselves. The coupling betweenτα and
τ ′
α now implies that there is an integer

m :=
k
∑

i=1

h′(ui) ≤ n

such thatY ′α
m = α. Hence under this coupling we have

{Y α
n = α} ⊂ {Y ′α

m = α}

for somem ≤ n.
Choosing a coupling for (10) withi = n andj = m yields

{Y s
n = α} = {1α(Y s

n ) = 1} ⊂ {1α(Y ′s
m ) = 1} = {Y ′s

m = α}

10



Altogether we obtain

{T = n} ⊂ {Y α
n = α} ∩ {Y s

n = α} ⊂
n
⋃

m=1

({Y ′α
m = α} ∩ {Y ′s

m = α})

⊂
n
⋃

m=1

{T ′ ≤ m} ⊂ {T ′ ≤ n}

which shows thatT ′ ≤d T .
�

Lemma 4 The convergence‖δαP 2k
n − π′

n‖ → 0 for k → ∞ is uniform inn ∈ N.

Proof: Choose any indexn ∈ N. LetX denote the queueing process with respect
to the service time distributionF andXn the one with service time distribution
Fn. Both are completely determined by an initial distributionand the sequences
of inter–arrival and service times.

We couple both processes to the same probability space in thefollowing way.
Let X0 = X

(n)
0 = (0, 0) for all paths. Also the Poisson arrival process shall be

pathwise identical forX andXn. Let Sj andS
(n)
j denote the service time for the

jth user inX andXn, respectively. According to Stoyan [20], proposition 1.2.1,
the assumptionFn ≤d F implies that we can choose our common probability
space such thatS(n)

j ≤ Sj for all j ∈ N and all paths. Define the functionh on the
state spaceE = N0 × R

c
+ by

h(n, x) := n +
1

c

c
∑

i=1

xi

xi + 1

for all n ∈ N0 andx = (x1, . . . , xc) ∈ R
c
+. The queueX is empty at timet, i.e.

Xt = (0, 0), if and only if h(Xt) = 0. By the above construction ofX andXn,
we obtainh(X

(n)
t ) ≤ h(Xt) for all timest and all paths.

Regarding the embedded Markov chainsZ ′ andZ ′
n with transition kernelsP 2

andP 2
n , respectively, the same coupling implies that the recurrence timeτ

(n)
α to

the atomα = (0, 0) is pathwise (and hence stochastically) smaller inZ ′
n than

its analogueτα in Z ′. Denote the coupling times forZ ′ andZ ′
n by T andTn,

respectively.
The coupling inequality for Markov chains (see Asmussen [1], chapter VII,

(2.3)) states that
‖δαP 2k

n − π′
n‖ ≤ P(Tn > k)
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for all k ∈ N. Now lemma 3 states thatTn is stochastically smaller thanT ,
meaning that

P(Tn > k) ≤ P(T > k)

for all k ∈ N. Thus we have obtained a uniform bound for the convergence rates
of all the chains(Z ′

n : n ∈ N) starting from the initial distributionδα.
�

Theorem 2 Assume thatFn → F weakly and allFn are stochastically smaller
than F . Then the stationary distributionsπn of the M/G/c queues with service
time distributionsFn converge weakly toπ.

Proof: Due to equation (7) and the weak Feller property ofP it suffices show
weak convergenceπ′

n → π′. Choose anyε > 0 and any bounded and continuous
functionf : E → R. By (9), there is a numberl0 ∈ N such that

|δαP 2lf − π′f | < ε/3

for all l ≥ l0. We write

π′
n − π′ =

(

π′
n − δαP 2l

n

)

+
(

δαP 2l
n − δαP 2l

)

+
(

δαP 2l − π′
)

Lemma 4 yields that further

|δαP 2l
n f − π′

nf | < ε/3

for all l ≥ l0 and uniformly inn ∈ N. Finally, lemma 2 states that for any fixed
l ≥ l0 there is a numbern0 ∈ N such that

|δαP 2l
n f − δαP 2lf | < ε/3

for n ≥ n0. Altogether this shows thatπ′
n → π′ asn → ∞ in weak convergence.

�
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