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Abstract

Consider an M/G/c queue with homogeneous servers and sdinie
distribution F. It is shown that an approximation of the service time distri
bution F' by stochastically smaller distributions, sAy, leads to an approx-
imation of the stationary distribution of the original M/G/c queue by the
stationary distributionsr,, of the M/G/c queues with service time distribu-
tions F},. Here all approximations are in weak convergence. The aggtim
is based on a representation of M/G/c queues in terms of \pisealeter-
ministic Markov processes as well as some coupling methods.

1 Introduction

Multi—-server queues are typical elements of stochasticaetsad application ar-
eas like computer or communication networks. However, nigaky feasible
methods of their analysis are still to be developed. Sométgtize results, such
as stability conditions or the form of the stationary dlatition, can be found in
Kiefer and Wolfowitz [12], Breuer [7], and Asmussen [1], pher XII.

On the other hand, multi-server queues with Markovian sertime distri-
butions can be readily analyzed by standard methods (seeNegts [16] for
the PH/M/c and the GI/PH/c queues). Steady—state waitmg tistributions for
this case have been computed in Asmussen and Moller [3]. ntanaand Ra-
maswami [15] provide efficient algorithms to compute theisteary distribution
of the GI/PH/c queue.



The class PH of phase—type service time distributions apygaere is al-
most as tractable as the class of exponential distributi@isufficiently versatile
as to be dense in the class of all distributions on the time @de Schassberger
[19], section 1.6). Statistical procedures for fitting PHtdbutions are given in
Asmussen [4]. The versatility of the class PH gives rise ®owlide—spread be-
lieve that an approximation of general multi-server queslnesild be possible by
approximating the general service time distributions byd¥tributions.

The purpose of the present paper is to validate this conbtua proof which
is applicable to a large class of multi-server queues. Alghathe motivation to
study continuity of multi-server queues stems mainly from tractability of the
special case having phase—type service time distribytibagroofs in this paper
do not require any phase—type assumption. However, theremngis do require
that the approximating service time distributions are Iséstically smaller than
the original one.

Previous results on approximating multi-server queuessammarized in
Stoyan [20] and Kimura [13]. Rachev [18], chapter 12, cargaiesults on the
stability of single—server queues. Asmussen and Joha@$éaye proven conti-
nuity of the mean stationary waiting time for the GI/G/c geelihe present paper
is concerned with continuity of the stationary distribuiso

In a rough outline, the argument proceeds as follows: Hiesgeneral multi—
server queue is modelled as a piecewise deterministic Mapkacess (PDMP),
using auxiliary variables for the remaining service timesach server. This leads
to a Markov chain at jump epochs, for which the transitiorjaiaility kernel can
be derived explicitly. Its form shows that an approximatidmhe original service
time distribution by stochastically smaller distributgyields an approximation of
the transition kernel. This implies an approximation of stetionary distribution
of the Markov chain embedded at jump epochs. As the transfibomfrom the
embedded stationary distribution to the stationary diatron of the queueing
process is continuous and does not involve the service tistiéition, the above
approximation suffices to establish the result.

The paper is organized as follows: Section 2 contains a ghesentation of
basic notations and results for PDMPs. A representatioheM/G/c queueing
process by means of PDMPs is given in section 3. Finally iticed it is shown
how an approximation of the service time distribution ireplein approximation
of the stationary distribution of the queueing process.



2 Piecewisedeterministic Markov processes

Piecewise deterministic Markov processes (PDMPs) are a&golwgeneraliza-
tion of Markov jump processes. They have initially been gpedl by means of
martingale theory aiming at more general models for opticaaltrol theory. In
the 1990s, Costa and Dufour [8, 11] achieved to find methodsldaving the
stationary distribution of a PDMP, using either the embelddarkov chain after
jump times or the special structure of its resolvent. Fordaresive presentation
of and a bibliography for PDMPs see Davis [10].

PDMPs are a generalization from Markov jump processes wgpect to three
main features. The state space now is not constrained tordatzle set anymore,
but will be allowed to be continuous. Second, between jurhpgtocess is not
restricted to remain constant, but may change deterngalti On the one hand
this clearly is a great enhancement of modelling power, buhe other hand the
fact that the moves between jumps are deterministic keepstdichastic complex-
ity of the process essentially on the level of a Markov jumpcess. Finally, the
possibility of movements between jumps gives rise to a nex kf jump, namely
jumps which occur immediately upon reaching a certain stabe queueing sys-
tems this usually will be the case whenever a server becaleeamd receives a
new user immediately. This new kind of jump will be calledrinsic jump, since
it is induced exclusively by the state of the system. The rokived of jump, as
induced by Markovian arrivals, will be called an extringioijp.

Let X = (X, : t € R,) denote a continuous—time Markov process with a Pol-
ish state spacg. Denote by theo—algebra generated by the Borel subsets of
The processt’ shall be determined by the following characteristic repn¢stion:

e Aflow ¢ : E x RT — FonkE.
e Aclosed setA € £ containing the states that induce intrinsic jumps.

e Afunction A : E — R, satisfyingsup,.x A(z) < Anax < 00. The value
A(z) indicates the intensity of an extrinsic jump occurring i throcesst
is in stater .

e Astochastic transition measuge: Ex&° — [0,1]with &£ := EN(E \ A),
describing the behaviour upon (extrinsic and intrinsichjus.

First define for ale € E° := E \ A the deterministic variable

t.(z) :=inf{t € R" : ¢(x,t) € A}
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as the time until the sek is reached from a statec E. Then define the random
variableT'(z) of the first (intrinsic or extrinsic) jump time after stargim state.
This is distributed as

~fo Mo(@u)du ¢ ¢ (z)
e Wz
P{T(@) > 1) = {o t> t(2)

forallt € R,. We need to assume that there are only finitely many jumps iof
any finite interval. In the queueing application presentesiéction 3, this will be
trivial to verify.

The PDMPX evolves in the following way: Starting in any statec F \ A,
it changes deterministically according to the fldwintil it entersA, inducing an
intrinsic jump, or an extrinsic jump occurs. Upon a jump, stete ofA’ changes
immediately according to the transition meas@xdeading to a state € £ \ A.
Then the process starts a new cycle, behaving as descritiethamext jump.

Given the specification of a PDMR’, one way to determine its stationary
distribution is described in Costa [8]. L&t = X denote the initial state and,
the state oft after thenth jump. ThenZ = (Z,, : n € Ny) is called the Markov
chain associated t&'. If Z has a stationary distributionsatisfying

tx(x)
/ / e M) dt dr(z) < oo

whereA(t, z) = fo ) du, then a stationary distribution fot’ can be
constructed as foIIows Deflne the set := {(z,t) € E xR} : t < tu(x)}
and denote the Borel—algebra on/ by M. For any setd € £ and measurable
functionsty, ts : £ — [0, co] with ¢, (z) < ta(z) < t*(x) for all z € E define

Bixlth = {(.I t) - M . tl(x) S t < t2<x)7x < A}

o) —AtD) Gt dr(x
v (BY?) = Ji f“(‘” ) (1)
fE e~ M) dt dm(x)
By this definitiony, can be uniquely extended to a measureMn Using the
measurable restriction of the flow function M — FE to the setM, we obtain a
measure.,. ¢~ '. By theorem 2 of Costa [8] this is the stationary distribotad X .

3 TheM/G/c queueasa PDMP

Consider an M/G/c queue with the following characteristithe Poisson input
shall have rate.. The service time distribution shall be denotedfybeing equal
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for each of the: servers.

This queue can be described as a piecewise—deterministioMarocess in
the following way. Define a state spaée := N, x RS, where for(n,z) =
(n,z1,...,x.) € E the first component represents the number of users waiting
in the queue and the componenisepresent the remaining service time atitfe
server. If theith server is idle, them; = 0.

A flow function ¢ on E shall be defined by

di(n,x) == (n, (x1 —t)*, ..., (x. — t)F) (2)

forall (n,z) = (n,xy,...,2.) € E andt € R, with (s — )" := max(0, s — t)
forall s,t € R.
We define further for alk = (4,...,z.) € RS the value

f(z) = min{z; : 1 <i<c¢,x; >0} for z#0
B for =0

3)

This denotes the time until the next server will become idle.

Differing from Davis [9] and Costa, Dufour [11], we will irdduce two transi-
tion measures); and(), for the jumps that can occur. This reflects the queueing
process more transparentty; is the transition measure for arrivals, and thus we
define for all(n, z) = (n,z1,...,2.) € FandA = A; x ... x A,

Smn+t1 - La(x) for [[z; >0
i=1

6m,n . H 1Aj (ZU]) . F(Az) for 7 = mln{l X = 0}

j#i
(4)
Note that the latter case in the definition@f is possible only forn = m = 0.
The second transition measupe refers to the case of a server becoming idle.
If there are any waiting users in the queue, itimmediateliyes@mmence to serve
a new user. Thus we have

Ot - 11 1a,(z;) - F(A;) for n>1,2;=0

S - La(x) for n=0

Qi((n,z), {m}x A) =

(5)
Note that for the case > 1, only one server can be idle at a time. Since the
gueue has Poisson single arrival input, the probabilitytina servers finish their
work at the same time instant is zero. Furthermore, if oneesdrad become idle
before the other server and there had been any waiting ustrs queue, it would
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have commenced serving one of them. Also note that thecase) does not
correspond to a jump in the given formulation of the PDMP nhodewever, we
could reformulate the state space, gay- (N, x R%)U|J;_; R* U{0}, such that
it suits exactly the specification in Davis [10]. Then we wibabserve jumps for
the case: = 0, too. In order to simplify the presentation of the model, Wwese
to accept this slight inaccuracy.

In our queueing application, we hawéx, t) = A - t. The transition kernel of
the embedded Markov chai = (Z,, : n € Ny) at jump times is given as

ty ()
P((n,z),{m} x A) = /0 e‘AS)\Ql((n,x —s-1),{m} x A) ds
e @Qy (2 — ta(2) - 1), {m} x A)

with 1 denoting the—dimensional column vector with all entries equal to one. It
can be arranged by its first component inNinx Ny—matrix with kernel entries
denoted as in

PQ()(ZIZ',A) POl(.CE',A) 0 0 O
PlO(xaA) 0 Pol(l’,A) 0 0
P([L’,A) = 0 P10($7A> 0 P()l(l’,A) 0
0 s

0 Plo(l’,A) 0 P()l( ,A)

The blockwise skip—free (or QBD) structure is due to the that there are only
single arrivals and service completions at a jump timetof The blockwise
Toeplitz structure follows from the product form of the jurk@rnels®, and @,
in (4) and (5).

For our purposes it is enough to notice that the construcifan.¢—! at the
end of section 2 does not involve the service time distrdyutf the queue. This
suffices to prove

Theorem 1 LetX andX,, n € N, denote PDMPs with embedded Markov chains
Z and Z,, n € N, respectively. Further let, ; andr,, u,, denote the stationary
distributions ofZ, X and Z,,, X,, respectively. Then weak convergenge—
implies weak convergengg, — L.

Proof: Since the flow functior is continuous and identical for all process€s
and X, n € N, it suffices by theorem 5.1 of Billingsley [5] to show that Wea
convergence,, — w implies weak convergence,, — v,. By (1) and the special
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form of A(x,t) we obtain for continuous and bounded functighs £ — R and
g: R, —R

/f (B)dvs(z, ) = O /f / 7 e di dn(o)

Wlth C = fE e~ dt dn(z). Ast.(z) is continuous inr, the integrand
N @ g(#)e=™ dt is continuous inz, too. Following §8.4 in Breiman [6],

thls completes the proof.

0]

4  The Approximation

In this section it is shown that an approximation of the sarvime distribution
F by stochastically smaller distributions, sBy, leads to an approximation of the
stationary distributionr of the original M/G/c queue by the stationary distribu-
tions,, of the M/G/c queues with service time distributiofis

Let (F,, : n € N) denote a sequence of distribution functions that converge
weakly to F'. This means that bounded and continuous functipnsR, — R
satisfy

/den—>/de as n— o

By the same construction as in the previous section, the 84fG2ues with service
time distributionZ,, lead to transition kernelB, of the Markov chains embedded
at jump times. These have the same structurg,aand the same expressions for
the subkernel®,.;;, with i, j € {0, 1}, except for a substitution df by F,,. Note
that ;; and P, ;; differ only for j = 0.

Lemmal The weak convergence
P,(x,.) — P(z,.) as n— oo

holds uniformly for allx € E.

Proof: It suffices to show foi € {0,1} andz € RS that P, o(z,.) — Po(z,.)



weakly asn — oo. Again following Breiman [6], 88.4, it suffices to verify

/ A1) - fo(90) Paols duns - dy.)
— /fl(yl) o fe(ye) Pio(xs dyy, - . - dye)

asn — oo for all bounded and continuous functiofis: R, — R, 1 < k < c.
However, given the product form of the kernels in (4) andia} is an immediate
consequence of the assumption that— F weakly. Furthermore, the conver-
gence is uniform inc € RS.

O

Lemma2 The higher order iterates @%, converge weakly to the ones &1 i.e.
for all k£ € N and bounded and continuous functighs £ — R the limit

/f(y)Pff(x,dy)—>/f(y)P’“(x,dy) as n — oo

holds uniformly forz € E.

Proof: Fork = 1 this is the statement of lemma 1. The induction step fkom1

to k is seen as follows. First of all abbreviate for a kerAednd a functionf the
function K f(z) := [ f(y)K(z,dy). For any bounded and continuous function
f: E— Randz € E we can write

Pif(x) = PEf(x) = By (Puf(2) = Pf(x)) + (B = PP f(z)  (8)

By proposition 4.9 in Costa and Dufour [11], the keriels weak Feller, which
means that the functiof f is again bounded and continuous. By induction hy-
pothesis there is aiV; € N such that the last term of the sum above satisfies

[Py Pf(w) — PSP f(x)| <€

for n > N; and uniformly inz, given any:= > 0. The casé = 1 states that there
is someN, € N such that

|Puf () = Pf(z)] <e

for n > Ny and uniformly inz. SinceP, and thus every iterate is stochastic, the
absolute value of the first term in (6) is bounded:byoo.
O



At this point we should take a look at the periodicity of thelemdded Markov
chainsZ and Z,,. The times of jumps correspond to all arrivals and depasture
of the system processes. Hen€eand Z, have period 2. The state space is
partitioned ast’ = FE, U E; with Ey and F; comprising all states with even
and odd numbers of users in the system, respectively.rl.et, (resp.z”, )
denote the stationary distributions of the embedded chitfistransition matrix
P? which are supported b¥, (resp.E;). Then we can write

= %(W/ + ") = %(7?' + 7' P) (7)
Since P is weak Feller, it now suffices to show, — 7’ in weak convergence.
Note that lemma 2 witlk = 2 now yields the equivalent to lemma 1. Denote the
embedded Markov chains with transition matriges P? and supportz, by Z’
andZ/, respectively. These are aperiodic.

The approximatiorf;,, — F of the service time distribution can be chosen in
such a way that, is stochastically smaller thaii (we write F,, <, F', see Stoyan
[20]) for all n € N. Writing E(F') = [ ¢ dF(t), this impliesE(F,) < E(F) such
that

MN-E(F,) <c (8)

for all n € N. For a kernelK and a measurg on (E, ), denote the measure
| K(z,.)du(z) by uK. Letd, denote the Dirac measure an:= {(0,0)}. The
above condition (8) guarantees convergence

|6, P* — 7' || =0 and |6,P* —7'|| =0  ask — oo (9)

against invariant probability measure§ and ' (see Orey [17], with C—set or
atoma ). This convergence is in total variation and thus entailaknanvergence.

The next lemma compares the convergence speed of positiveeat Markov
chains with an atom. Since it may be of independent intetest |t is formulated
in slightly more general terms.

Lemma3 Let) = (Y, : n € Ny) and)’ = (Y,! : n € Ny) denote positive recur-
rent Markov chains with the same state spacand an atona € E. Denote their
stationary distributions by and~’, respectively. Further denote their stationary
versions (with initial distributionr and=’) by )* and)’®, and the versions with
initial distributiond,, (being the Dirac measure at) by Y* and)’“, respectively.
Define coupling time§” andT” by

T:=min{fneN:Y =YV*=a} and 7" :=min{n e N:Y*=Y"=aqa}
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Let 7, and 7/, denote the recurrence times to statéor the chaingy~ and)’“,
respectively. Thed” <, T if 7/, <, 7,.

Proof: Let (fx : k € N) and(f, : k¥ € N) denote the distribution of, andr/,
respectively. Note that

o] -1 o] -1
(a) = (Z kf;é) > (Z m) = ()
k=1 k=1
This shows that for any, ;7 € N, the stochastic inequality
la(Yz‘s) <d 101(Yj/8) (10)

holds. Of course it does not hold in general for all p&irg) simultaneously, but
only for any choice of, ;7 € N. We will specify this choice below.

Now consider a coupling for, and7/,. Denote their distribution functions
by F and F’, and define the quantile functiohs:= F~! andh’ := (F')~! as
generalized inverses df and F’. By Lindvall [14], section IV.3, the inequality
7! <4 To Mmeans that'(U) < h(U) for a uniform random variabl& ~ U(0, 1).

By definition of 7', we obtain the inclusion

{T =n} Cc{YY=a}n{Y; =a}

for everyn € N. For every element ofY,* = «} there is an integek < n
and realisations, . . ., u;, of iid uniform random variable#/,, . . ., U, such that

n = S°¥ h(u;). This integerk indicates the number of visits t before the

visit at timen. The random variables, ..., U, can be chosen as iid, since the
successive recurrence timesitare iid themselves. The coupling betweerand

7, now implies that there is an integer

k
m = Zh’(ui) <n
=1
such that’* = «. Hence under this coupling we have
(Yo =a}c{Ve=a}

for somem < n.
Choosing a coupling for (10) with= n andj = m yields

{7 = o} ={1.(Y)) =1} c {L(Y;;) =1} ={¥7 = o}
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Altogether we obtain

n

{T=nyc{Yy=a}n{¥;=a}C |J (¥} =a}n{¥y=0a})

m=1

C O{Tlgm}C{T'gn}

m=1

which shows thaf” <, T
O

Lemma4 The convergencgd, P> — ! || — 0 for k — oo is uniform inn € N.

Proof: Choose any index € N. Let X’ denote the queueing process with respect
to the service time distributiof” and X,, the one with service time distribution
F,,. Both are completely determined by an initial distributeomd the sequences
of inter—arrival and service times.

We couple both processes to the same probability space foltbeing way.
Let X, = X\ = (0,0) for all paths. Also the Poisson arrival process shall be
pathwise identical fo®’ and&,,. Let S andS](.") denote the service time for the
jth user inX and X, respectively. According to Stoyan [20], proposition 1,2.
the assumptiorf,, <, F implies that we can choose our common probability
space such thﬁj(.") < §;forall j € N and all paths. Define the functidnon the
state spac# = N, x RS by

C

1

h(n,z) :=n+ - o
c

— .Tl—i—l

foralln € Ny andz = (z1,...,2.) € RS. The queuet is empty at time, i.e.
X; = (0,0), if and only if h(X;) = 0. By the above construction ¢f and A,
we obtainh(Xt(")) < h(X,) for all timest and all paths.

Regarding the embedded Markov chaifsand Z! with transition kernelg>?
and P2, respectively, the same coupling implies that the recoedimery” to
the atoma = (0,0) is pathwise (and hence stochastically) smallegjpthan
its analoguer, in Z’. Denote the coupling times fag’ and Z! by 7" and T,
respectively.

The coupling inequality for Markov chains (see Asmussen ¢hppter VII,
(2.3)) states that

|6 P2 — || < P(T, > k)
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for all £ € N. Now lemma 3 states th&t, is stochastically smaller thah,
meaning that
P(T, > k) <P(T > k)

for all £ € N. Thus we have obtained a uniform bound for the convergeries ra
of all the chaing Z], : n € N) starting from the initial distribution,,.
0]

Theorem 2 Assume thaft;,, — F weakly and allF;,, are stochastically smaller
than F. Then the stationary distributions, of the M/G/c queues with service
time distributions?;, converge weakly ta.

Proof: Due to equation (7) and the weak Feller propertyroit suffices show
weak convergence/, — 7’. Choose any > 0 and any bounded and continuous
functionf : E — R. By (9), there is a numbéy € N such that

6, P f —n'f| <¢/3
forall i > [,. We write
m, —n = (m], — 5aP3l) + (5(1]-_’3 — 5aP2l) + (5aP2l —7')
Lemma 4 yields that further
6o P f = m fl < /3

for all [ > [, and uniformly inn € N. Finally, lemma 2 states that for any fixed
[ > [y there is a numbet, € N such that

6, P2 f — 6, P%f| < /3

for n > ny. Altogether this shows that, — 7’ asn — oo in weak convergence.
O
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