Discrete Variational Methods

Elizabeth Mansfield

KEN'T

UNIVERSITY OF KENT
Based on joint work with Acknowledgements:
Peter Hydon, Surrey, UK Leverhulme Trust

Reinout Quispel, LaTrobe, Australia IAS, LaTrobe



Context and Background

Can we use symbolic algebra to study numerical methods?

Examples

e Can you design a numerical method, automatically, to
inherit a variational principle and selected conservation
laws?

e Can one obtain symmetries and hence conservation laws,
automatically, of variational numerical methods?



Noether’'s T heorem

links symmetries and conservation laws for Euler Lagrange
Systems.

A conservation law is a divergence expression which is zero on
solutions of the system.

The heat equation u; + (—uz), = 0 is its own conservation law.
Integrating,

5y

— [ u+ (—u =0

ot Jo ( w)]aQ
Rate of change __ Net of comings and goings
of total heat in 2 across the boundary

NO sources or sinks



The usual examples:

Symmetry Conserved Quantity
leaves Ldz invariant the quantity behind &, in Div
t*=t+c
T Energy
translation in time

*k
i =x;+ ¢ _
{ 2 ¢ Linear Momenta

translation in space

x* = Rx
Angular Momenta
rotation in space

a* = ¢(a,b),b* = (a,b)
bap — Pptha = 1 Potential vorticity

7\

Particle relabelling

\



How to prove Noether’'s Theorem?

Step 1: the Euler Lagrange operator

d(Ldz) = d (5 (u2+u2,)dz)

(uzduy + uzrdugy)dx

(—ugzdu + uzzrzdu)de
—I—E% (uxdu — 2uggdug + [% (umdu)>
= F(L)dudx + Dgan

General Formula, explicit, exact, symbolic, for n; known.

E = wod, where 7 projects out the divergence term.

More than one dependent variable:

dL(z,u,v,...)dz = E%(L)dudzx + EY(L)dvdx + [%nL



Step 2: Variational Symmetries
Symmetries arise from Lie group actions.

EXAMPLE: G = (R,+)

T u(x
€-rx=x" = : e -u=u"(z") = (@)
1l —ex 1l —ex

Group Action Property

(e o) =0+ (r2a) = i = =l = (40 e

Prolonged Group Action

e — gt — Bu*(a:*)/ax* - Uy
x — Upx = —

v Ox Ox (1 — ex)?

and
5"sz Ux

(1—e(-2))2  (1— (64 x)?

d-(e-ugp) =



Action on Integrals

€ JoL(z,u,ug,...)dz

def": of = [oL(e-z,e - u€e-ug, --)de -z
change of _ R e
variable  — JeLle T e u e ug, )= ——dx

Use L2 theory to get that a variational symmetry of a
Lagrangian is a group action such that

de - x
dx

L(x,u,ug,...) = L(e-x,€-u,e-ug, --)



Assuming the identity transformation occurs fo(g e =0,
Infinitesimal Actions are obtained by applying d_|€:O' If
€

d d

¢04 — _|e:O€ ) ua7 6’1, — a|€:0€ " Ly

de
then for

Qa — qué o Zglugz

we can finally state Noether's theorem precisely:

Q- E(L) => Q"E”(L) = Div(A(Q, L))
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On the simplest level, the proof involves a manipulation of the
expressions involved. Need to dig deeper to translate the
theorem to a discrete setting.



Figure 1: First Challenge



Symmetry

Noether’'s Theorem

|

Conservation Law

Figure 2: Second Challenge. What replaces the black box
for numerical data?



Difference Systems

Difference Euler-Lagrange operator

—

d(Lp) = d (%u% + unun_|_1>

(undun + w4 1dun + undu, 4 1)

(un + vpg1 + up—1)dun + (S —id)(- - )

= E(Lp)dupn + (S —id)(ng,,)
General formula, explicit, exact, symbolic, for g known.

E = wod, where 7 projects out the total difference term.

More than one dependent variable:

d(LnAn) = E¥(Ln)dun + E¥(Ly)dvn + (S — id)(nz,.)



e Since n cannot vary in a smooth way, the “mesh variables”
Tn are treated as dependent variables.

e T he group action commutes with shift:

€SI (un) =€ Uyt = ¢ - up

For example,

The symmetry condition is:

Ln(xn7 L4, Un,y o un—|—k>

where ()*=c¢€- ().



Setting

d
€x *
@ ezoun

nza

d
x;l;,) Qu —_

" de

e=0

then the difference Noether's theorem is

Q- E(Ln) = (5 —id)(An(Qn, Ln)),

SO a symmetry yields a total difference expression which is zero
on solutions of the difference Euler Lagrange system. Explicit
formulae for An(Qn,Ln) known. The result is independent of
any continuum limit.

Note the similarity of the formula to that of the smooth casell



Elementary example T.D. Lee, Difference Equations and Conservation
Laws, J. Stat. Phys., 46 (1987)

A difference model for [(322 — V(x)) dt

Define

V)= [" Vi) da

In — Tp—1 /Tn-1

and take

(tn - tn—l)

1l (xy, — x 2
Ly = [( n "—1> ()

The group action is t; = t, + €, with x, invariant. The
conserved quantity is thus “energy”’. Now, Q! =1 for all n,
and QF = 0. By definition of difference EL operator,

0 = EXL,) = Ln—I—S( 0 Ln)

n—l



A difference model for [(332 — V(2)) d¢ (cont.)

Since Ly is a function of (¢t —t,_1),

0= E%Ly) = (S —id) <§Ln>

n

and thus
l [x Tn—1 2
n - 4Ln— =
N Vin) =c
! (tn_tH) + V()
Note that the energy in the smooth case is
1.5
x V.
2% T

Can regard the EL eqgn for the mesh variables as an equation
for a variable mesh.



INTERLUDE

If we know the group action for a particular conservation law,
we can ‘design in” that conservation law into a discretisation
by taking a Lagrangian composed of invariants. The Fels and
Olver formulation of moving frames is particularly helpful here:
a sample theorem is

Discrete rotation invariants in z2
Let (zn,yn), (xm,ym) be two points in the plane. Then

In,m = TnYn + TmYm, Jn,m — InYm — TmYn

are rotation invariants. Moreover, any discrete rotation
invariant is a function of these.



Made up example

Suppose

1
L, ==J?

1 2
2 nn+1 — §($nyn+1 - xn-l—lyn)

then

{ By = Jn,n—|—1yn-|—1 - Jn—l,nyn—l
E’be — _Jn,n+1xn-|—1 +Jn—1,nxn—1

Now, Qn = (Q%, Q%) = (—yn, zn) = gp|,_(=h,u) and thus

Qn-En = Jpnt1(=yn¥Ynt+1— TnTp41)
+Jn—10(UnYn—1 + TnTp_1)
= —Jnnt+1lnnt+1 T In—1ndn—1n
= —(S—-id)(Jn-1,nln—1,n)
gives the conserved quantity.



Similarity of formulae arises as proofs can be given a common
algebraic foundation.

Variational Complexes

SMOOTH e.g. P.J. Olver, Applications . ..

—~

a2 Pvoas 4 A 4 A, &
NoFE o lw iy
AL, 5 A2, 5
DIFFERENCE Hydon and ELM, J. FoCM
A Ex2 8 3 & Ay & A, G5
NFE |w s
) )



A variational complex is a tool which helps to

formulate precisely, and answer, questions such as;

Is my system variational? and if so, what is the

Lagrangian?

Is an expression a divergence? and if so, of what?



What about Finite Element Method? that is,

moment based approximations calculated relative to a
triangulation?

Not all choices of Finite Element are suited to variational
methods Consider the projection to piecewise constant
functions,

M(u) = Z OnXen

where

1 Tn+1
n = / udx.
CIZn_|_1 — ILn JTp

For L[u] = %u% we have M(u)z = >(an — a,_1)0(x — xn) taking
the weak or distributional meaning of the derivative, and thus

M : /u% — M(L) =) (an — a,_1)°.



Taking the variational derivative with respect to the moments
yields

dn(L) = ¥, 2(an — ap_1)(dan — doy,_1)
>on2(2an —ap_1 — an—l—l)dan

+boundary terms

The discrete Euler Lagrange equation is then
20 — Q1 — Apt1 = O or

Qpt1 — Qn = K, KER

This is not good!! In fact, the solution to the discrete EL egn

IS correct only for the regular partition.
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Partition 1
xo xr1
(8%
Partition 2
wb .. I3 T4 s



The Quispel fix We can alter the previous unsatisfactory
scheme as follows. Use the zeroth moments for u on (zn,z,41)
and (z,41,%,42) to Create a piecewise linear approximation for
u ON (xn,Ty42) With the same 2 moments:

N(u)n = =+ Anz + By

An = 2 (O‘” = O‘”“)

In — Tp4-2
(xn—l—l + xn-|—2> QU — (xn—l—l + :En>
Ln+2 — Tn
for an approximation on the partition

Bnp

o Tp—4y Tp—2, Tn, Tp42, Tp4q, -
and do the same calculations as before. The resulting EL egn
“integrates’ to the correct equation,
Qn — Qp41 _

In — Tp4-2

kK, KER



e Approximations need to involve as many moments (per
element) as the order of the resulting EL eqn (twice the
order of the Lagrangian).

e [ he data need to involve information from either the
boundary of the element, or from nearby elements.

Problems disappear if the approximation data fit an exact
scheme, a la Douglas Arnold. Moreover, such a scheme vyields
stability!!



Differential Complexes and FE: D. Arnold, Beijing ICM Plenary talk

Choose a system of moments and sundry other data, aka
degrees of freedom, that yield projection operators such that
the diagram commutes:

0RrR A0 SAL G2 A3 g
MNod Tl T2 T3]
0r 50 S F1 S 72 413 L0
all relative to some triangulation.

NP = p-forms with coefficients smooth functions in z;
that is, integrands of integrals on p-surfaces
d = exterior derivative, d? =0
= projection operator, lNod =d ol
A Lagrangian is composed of wedge products of 1-, 2- and 3- forms.

Choose the discretisation of each to be in the relevant F;. Then

commutativity implies conditions for Brezzi's theorem to hold.



In one dimension: with ey, = (zn,z,41), Mo to piecewise linear,
[1; to piecewise constant with moment

oy = ot u(x)yYn(x) dz

In

Commutativity of the diagram

U rg) urdx

Mo | I M1
= Apz+ Bn — Ap = [p" W/ (2)Yn(z) do

ulg,

implies
An = w(@a(@]ent = [ u@) (@) da
Note that

/wn+1 Yn(z)dr = 1.

In

IS required by the projection property.



A finite element Lagrangian is built up of wedge products of
forms in Fq, F1, Fo, F3. Call this resulting space f3. In each
top-dimensional simplex, denoted 7, integrate to get

L=Y Li(al,-- ab)
T

where ol are the degrees of freedom in 7. L can also depend on
mesh data. Can now take d, the variation with respect to the o’

. N(fg) # NHNAg)
. M(uz) 7 M(u)z

The left hand side is how a *“top down” version of a complex
would project a Lagrangian. The right hand side is how a
LLagrangian is projected in practice.



Noether's Theorem for 1-D FEM
1 2
1 =3(%)
2

u
Using the usual PL interpolation, we have

I /L[u] dz— > Lp=>_ (tnt1 = un)?

2up41un(Tp41 — Tn)

Now the discrete EL eqgn is

where S :=n+ n+ 1. The scaling symmetry, u* = Au of L[u]
translates to u;, = A\up, SO Qn = uyn, and the conservation law is

(S — id) (undu, Ln) = O.



Noether's Theorem for 1-D FEM (cont.) L[u] = 1 (us/u)?

Setting unOu,,Ln = K, this yields

2
(u”"'l) — K(Zp41 — Tn) (u”+1> —1=0

Un Un

or

Up4+1 = Hnun, Hp ~ (F1+ %(%4-1 — Tn))

If (x,41 — zn) ~ z/n this integrates to

KT\ "
Up = (1 + 2—) ug ~ ug exp(ke/2)
n

which is the correct result.



In two dimensions, what is the equivalence class / cancelling
sums / boundary terms needed to calculate the Euler Lagrange
operator?

“‘coboundary of a 1-cochain”*

Take a triangulation: vertices v, oriented edges e and oriented

faces f.
D f
(4
O cochains are maps <v; >— R All maps linear.
1 cochains are maps <e¢; >— R Change orientation
2 cochains are maps < f; >— R = change sign.

*classical simplicial algebra



Given F < e; >— R, define 6F :< f; >— R by (for f as in the
diagram),
(0F)(f) = F(e;) + F(ej) — F(eg)

and extended linearly. Note: the signs are according to whether
the orientations match or not.

For the face in the diagram, the boundary is 9(f) = e; + e; — eg.

(0F)(f) = F(of)



The map ¢ is called the coboundary operator. If you are using
an interpolation scheme, all the data lie on the vertices. The
set of faces is then a set F of ordered triples of indices and the
set of edges &£ is a set of ordered pairs of indices.

The ordering gives the orientation.

v; = (%)

(ji)
(ki)
vj = (j)

(kj)
v = (k)

A telescoping/coboundary sum looks like cyclic sums,

(0F)(ikj) = F(kj) + F(ji) + F(ik)



The projection of [y L[u] dx is
_ 1)l u) dz
Efiﬁ( 1) /fiﬂ(L[ ])d (2)

where |f;| = 1 if f; has the anti-clockwise orientation, and
|fil = —1 for the reverse orientation.

If M(L) is a coboundary, the sums over the internal edges will
cancel: (2) will depend only on the boundary data.



Well known: we have a discrete Stokes’ theorem,

/ sF=| F
X 0X

The simplicial theory is attractive. It allows us to use results
and intuition from classical work on triangulations. It
generalizes to n dimensions.

From FE forms to simplicial cochains Let the top, i.e. n
dimensional simplices be denoted by 7. Given a piecewise
defined n-form on the 7, a simplicial n-cochain is achieved by
integrating the form on the 7. This map is the de Rham map.
We will denote it by [:

we F, (/w)(T):/Tw.



T heorem

Fi« is the algebra generated by the JF; with unevaluated degrees
of freedom

5£=7roaof

d* = 1 od is the analogue of the vertical exterior derivative,
modulo boundary terms

Fi is the algebra of vertical forms tensored with the space of
n-dimensional simplicial co-chains



Group actions on moments

The clue is the variational symmetry group action on
o L(z,u,---)dx: define

- [, u(z)vr(z) da

= [_e-u(z)yYr(e- x)dgwm dz
Example Recall the projective action

X | eu(:c)zu(x)

€ —

1l —ex 1l —ex

Then the induced action on the moments

Tn4+1 u(x) _ (Tat+1 u(x)
3 dx, Bn—/ o dz

Aqnp —

In In

IS

€ 0n — An, G'/anﬁn_ean



Example (cont.) In general for the projective action,

€ - fg“ zMu(x) dz

— (Tnt1 x™ u(x) dx
Tn (1—ex)™ 1—ex (l—ex)?

— Tn+1 a:mu(:v)
— JIn (1—ex)mt3 dz

THINK: if you want a coherent scheme which maps to itself
under this projective action, and involves only a finite amount
of data, then take your moments to be

Tp4+1 u(x)

u(x) — m

dx, m=3,4,...N.

In



CONCLUSIONS

The underlying algebraic pattern of the exact variational
complexes provide a framework for generalisations of
Noether's Theorem and conservation laws in general.

Symmetry-adapted moments would appear to be necessary.

Moving frames yield invariant discrete Lagrangians.

Open: how do coboundaries etc look in the usual FEM
data representations?



